Abstract. Sulphuric acid and organic vapours have been identified as the key components in the ubiquitous secondary new particle formation in the atmosphere. In order to assess their relative contribution and spatial variability, we analysed altogether 36 new particle formation events observed at four European measurement sites during EUCAARI campaigns in [2007][2008][2009]. We tested models of several different nucleation mechanisms coupling the formation rate of neutral particles (J ) with the concentration of sulphuric acid ([H 2 SO 4 ]) or low-volatility organic vapours ([org]) condensing on sub-4 nm particles, or with a combination of both concentrations. Furthermore, we determined the related nucleation coefficients connecting the neutral nucleation rate J with the vapour concentrations in each mechanism. The main goal of the study was to identify the mechanism of new particle formation and subsequent growth that minimizes the difference between the modelled and measured nucleation rates. At three out of four measurement sites -Hyytiälä (Finland), Melpitz (Germany) and San Pietro Capofiume (Italy) -the nucleation rate was closely connected to squared sulphuric acid concentration, whereas in Hohenpeissenberg (Germany) the low-volatility organic vapours were observed Correspondence to: P. Paasonen (pauli.paasonen@helsinki.fi) to be dominant. However, the nucleation rate at the sulphuric acid dominant sites could not be described with sulphuric acid concentration and a single value of the nucleation coefficient, as K in J =K [H 2 SO 4 ] 2 , but the median coefficients for different sites varied over an order of magnitude. This inter-site variation was substantially smaller when the heteromolecular homogenous nucleation between H 2 SO 4 and organic vapours was assumed to take place in addition to homogenous nucleation of H 2 SO 4 alone, i.e., In general, our results suggest that organic vapours do play a role, not only in the condensational growth of the particles, but also in the nucleation process, with a site-specific degree.
Abstract. We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ∼1-42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EU-CAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and Correspondence to: H. E. Manninen (hanna.manninen@helsinki.fi) relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, Published by Copernicus Publications on behalf of the European Geosciences Union. 7908H. E. Manninen et al.: EUCAARI ion spectrometer measurements nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1-30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.
Abstract. Ambient aerosol size distributions (> 3 nm) and OH, H 2 SO 4 , and terpene concentrations were measured from April 1998 to August 2000 at a rural continental site in southern Germany. New particle formation (NPF) events were detected on 18% of all days, typically during midday hours under sunny and dry conditions. The number of newly formed particles correlated significantly with solar irradiance and ambient levels of H 2 SO 4 . A pronounced anticorrelatation of NPF events with the pre-existing particle surface area was identified in the cold season, often associated with the advection of dry and relatively clean air masses from southerly directions (Alps). Estimates of the particle formation rate based on observations were around 1 cm −3 s −1 , being in agreement with the predictions of ternary homogeneous H 2 SO 4 -NH 3 -H 2 O nucleation within a few orders of magnitude. The experimentally determined nucleation mode particle growth rates were on average 2.6 nm h −1 , with a fraction of 0.7 nm h −1 being attributed to the cocondensation of H 2 SO 4 -H 2 O-NH 3 . The magnitude of nucleation mode particle growth was neither significantly correlated to H 2 SO 4 , nor to the observed particle formation rate. Turn-over rate calculations of measured monoterpenes and aromatic hydrocarbons suggest that especially the oxidation products of monoterpenes have the capacity to contribute to the growth of nucleation mode particles. Although a large number of precursor gases, aerosol and meteorological parameters were measured, the ultimate key factors controlling the occurence of NPF events could not be identified.
[1] Nitrous acid and OH were measured concurrently with a number of other atmospheric components and relevant photolysis frequencies during two campaigns at the Meteorological Observatory Hohenpeissenberg (980 m a.s.l.) in summer 2002 and 2004. On most of the 26 measurement days the HNO 2 concentration surprisingly showed a broad maximum around noon (on average 100 pptv) and much lower concentrations during the night ($30 pptv). The results indicate a strong unknown daytime source of HNO 2 with a production rate on the order of 2-4 Â 10 6 cm À3 s À1. The data demonstrate an important contribution of HNO 2 to local HO x levels over the entire day, comparable with the photolysis of O 3 and HCHO. On average during the 2004 campaign, 42% of integrated photolytic HO x formation is attributable to HNO 2 photolysis. Citation: Acker, K.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.