The direct observation of high-energy cosmic rays, up to the PeV energy region, will increasingly rely on highly performing calorimeters, and the physics performance will be primarily determined by their geometrical acceptance and energy resolution. Thus, it is extremely important to optimize their geometrical design, granularity and absorption depth, with respect to the total mass of the apparatus, which is amongst the most important constraints for a space mission. CaloCube is an homogeneous calorimeter whose basic geometry is cubic and isotropic, obtained by filling the cubic volume with small cubic scintillating crystals. In this way it is possible to detect particles arriving from every direction in space, thus maximizing the acceptance. This design summarizes a three-year R&D activity, aiming to both optimize and study the full-scale performance of the calorimeter, in the perspective of a cosmic-ray space mission, and investigate a viable technical design by means of the construction of several sizable prototypes. A large scale prototype, made of a mesh of 5 × 5 × 18 CsI(Tl) crystals, has been constructed and tested on high-energy particle beams at CERN SPS accelerator. In this paper we describe the CaloCube design and present the results relative to the response of the large scale prototype to electrons.
The multi-TeV energy region of the cosmic-ray spectra has been recently explored by direct detection experiments that used calorimetric techniques to measure the energy of the cosmic particles. Interesting spectral features have been observed in both all-electron and nuclei spectra. However, the interpretation of the results is compromised by the disagreements between the data obtained from the various experiments, that are not reconcilable with the quoted experimental uncertainties. Understanding the reason for the discrepancy among the measurements is of fundamental importance in view of the forthcoming high-energy cosmic-ray experiments planned for space, as well as for the correct interpretation of the available results. The purpose of this work is to investigate the possibility that a systematic effect may derive from the non-proportionality of the light response of inorganic crystals, typically used in high-energy calorimetry due to their excellent energy-resolution performance. The main reason for the non-proportionality of the crystals is that scintillation light yield depends on ionisation density. Experimental data obtained with ion beams were used to characterize the light response of various scintillator materials. The obtained luminous efficiencies were used as input of a Monte Carlo simulation to perform a comparative study of the effect of the light-yield non-proportionality on the detection of high-energy electromagnetic and hadronic showers. The result of this study indicates that, if the calorimeter response is calibrated by using the energy deposit of minimum ionizing particles, the measured shower energy might be affected by a significant systematic shift, at the level of few percent, whose sign and magnitude depend specifically on the type of scintillator material used.
Calorimetric space experiments were employed for the direct measurements of cosmic-ray spectra above the TeV region. According to several theoretical models and recent measurements, relevant features in both electron and nucleus fluxes are expected. Unfortunately, sizable disagreements among the current results of different space calorimeters exist. In order to improve the accuracy of future experiments, it is fundamental to understand the reasons of these discrepancies, especially since they are not compatible with the quoted experimental errors. A few articles of different collaborations suggest that a systematic error of a few percentage points related to the energy-scale calibration could explain these differences. In this work, we analyze the impact of the nonproportionality of the light yield of scintillating crystals on the energy scale of typical calorimeters. Space calorimeters are usually calibrated by employing minimal ionizing particles (MIPs), e.g., nonshowering proton or helium nuclei, which feature different ionization density distributions with respect to particles included in showers. By using the experimental data obtained by the CaloCube collaboration and a minimalist model of the light yield as a function of the ionization density, several scintillating crystals (BGO, CsI(Tl), LYSO, YAP, YAG and BaF2) are characterized. Then, the response of a few crystals is implemented inside the Monte Carlo simulation of a space calorimeter to check the energy deposited by electromagnetic and hadronic showers. The results of this work show that the energy scale obtained by MIP calibration could be affected by sizable systematic errors if the nonproportionality of scintillation light is not properly taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.