This paper describes the design and use of two new autonomous underwater vehicles, Jaguar and Puma, which were deployed in the summer of 2007 at sites at 85• N latitude in the ice-covered Arctic Ocean to search for hydrothermal vents. These robots are the first to be deployed and recovered through ice to the deep ocean (> 3500m) for scientific research. We examine the mechanical design, software architecture, navigation considerations, sensor suite and issues with deployment and recovery in the ice based on the missions they carried out. Successful recoveries of vehicles deployed under the ice requires two-way acoustic communication, flexible navigation strategies, redundant localization hardware, and software that can cope with several different kinds of failure. The ability to direct an AUV via the low bandwidth and intermittently functional acoustic channel, is of particular importance. Based on our experiences, we also discuss the applicability of the technology and operational approaches of this expedition to the exploration of Jupiter's ice-covered moon Europa.
We detected 32,078 very small, local microearthquakes (average M L = À1) during a 9 month deployment of five ocean bottom seismometers on the periphery of the Trans-Atlantic Geotraverse active mound. Seismicity rates were constant without any main shock-aftershock behavior at~243 events per day at the beginning of the experiment, 128 events per day after an instrument failed, and 97 events per day at the end of the experiment when whale calls increased background noise levels. The microearthquake seismograms are characterized by durations of <1 s and most have single-phase P wave arrivals (i.e., no S arrivals). We accurately located 6207 of the earthquakes, with hypocenters clustered within a narrow depth interval from~50 to 125 m below seafloor on the south and west flanks of the deposit. We model the microearthquakes as reaction-driven fracturing events caused by anhydrite deposition in the secondary circulation system of the hydrothermal mound and show that under reasonable modeling assumptions an average event represents a volume increase of 31-58 cm 3 , yielding an annual (seismogenic) anhydrite deposition rate of 27-51 m 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.