In JET, lower hybrid (LH) and ion cyclotron resonance frequency (ICRF) wave absorption in the scrape-off layer can lead to enhanced heat fluxes on some plasma facing components (PFCs). Experiments have been carried out to characterize these heat loads in order to: (i) prepare JET operation with the Be wall which has a reduced power handling capability as compared with the carbon wall and (ii) better understand the physics driving these wave absorption phenomena and propose solutions for next generation systems to reduce them. When using ICRF, hot spots are observed on the antenna structures and on limiters close to the powered antennas and are explained by acceleration of ions in RF-rectified sheath potentials. High temperatures up to 800 °C can be reached on locations where a deposit has built up on tile surfaces. Modelling which takes into account the fast thermal response of surface layers can reproduce well the surface temperature measurements via infrared (IR) imaging, and allow evaluation of the heat fluxes local to active ICRF antennas. The flux scales linearly with the density at the antenna radius and with the antenna voltage. Strap phasing corresponding to wave spectra with lower k ∥ values can lead to a significant increase in hot spot intensity in agreement with antenna modelling that predicts, in that case, an increase in RF sheath rectification. LH absorption in front of the antenna through electron Landau damping of the wave with high N ∥ components generates hot spots precisely located on PFCs magnetically connected to the launcher. Analysis of the LH hot spot surface temperature from IR measurements allows a quantification of the power flux along the field lines: in the worst case scenario it is in the range 15–30 MW m−2. The main driving parameter is the LH power density along the horizontal rows of the launcher, the heat fluxes scaling roughly with the square of the LH power density. The local electron density in front of the grill increases with the LH launched power; this also enhances the intensity of the LH hot spots.
Lower hybrid (LH) current drive experiments have been carried out on JET with an antenna-plasma separatrix distance varying between 0.09 and 0.15 m, and LH power in the range 0-3.2 MW. For different plasma configurations, the electron density n e of the scrape-off layer has been studied by the mean of a reciprocating Langmuir probe magnetically connected to the LH antenna. For pulses in the high confinement regime (H mode) characterized by strong particle bursts in the plasma edge, the edge localized modes (ELMs), profiles of the saturation current (J sat ) are obtained with a sufficient time resolution to distinguish 'between ELMs' and during the rise and decay of the ELMs.It is found that gas injection from a valve located near the LH launcher and magnetically connected to it allows one to raise the density and improve the LH coupling. The J sat profiles indicate quite clearly that this density rise affects mainly the plasma layer in front of the antenna with a typical thickness of 5 cm. The resulting profile can be extremely flat in this region. The effect of the near-launcher gas injection but also of the LH power and the total gas injection on the density at the wall is quantitatively documented. It is shown in particular that with increasing LH power, the required gas injection for obtaining good LH coupling is decreasing, with no saturation obtained so far. Effect of the ELMs on the LH coupling is also discussed. Modelling with the EDGE2D code indicates that such flat profiles of J sat /n e can be obtained when LH power dissipation is taken into account. Detailed analysis of the heat flux carried by
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.