Stable and stationary states with hollow current density profiles have been achieved in Tore Supra with lower hybrid current drive (LHCD) during reduced toroidal magnetic field operation (B t 2 T) and in weak LH absorption regimes. For these plasma conditions, offaxis LH power deposition profiles are obtained in a reproducible manner when the internal LH caustics prevent central absorption of the waves. In the multipass LH wave propagation regime, the validity of the statistical treatment of stochastic wave diffusion is shown both theoretically and experimentally. When a large fraction of the plasma current (above 50%) is non-inductively sustained by the LH waves, the magnetic shear is reversed in the plasma core, i.e. inside a normalized plasma radius of the order of 0.4. The resulting hollow current density profiles have led to an enhancement of the total electron thermal energy content, up to a factor of 1.6 compared with L-mode discharges. The confinement improvement is attributed to a strong reduction of the electron thermal diffusivity in the central reversed shear region, nearly down to its neoclassical level.
Équipe 107 : Physique des plasmas chaudsInternational audienceDuring the 2011 experimental campaign, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra tokamak was equipped with a new type of Faraday screen (FS). The new design aimed at minimizing the integrated parallel electric field over long field lines as well as increasing the heat exhaust capability of the actively cooled screen. It proved to be inefficient for attenuating the radio-frequency (RF)-sheaths on the screen itself on the contrary to the heat exhaust concept that allowed operation despite higher heat fluxes on the antenna. In parallel, a new approach has been proposed to model self-consistently RF sheaths: the SSWICH (Self-consistent Sheaths and Waves for IC Heating) code. Simulations results from SSWICH coupled with the TOPICA antenna code were able to reproduce the difference between the two FS designs and part of the spatial pattern of heat loads and Langmuir probe floating potential. The poloidal pattern is a reliable result that mainly depends on the electrical design of the antenna while the radial pattern is on the contrary highly sensitive to loosely constrained parameters such as perpendicular conductivity that generates a DC current circulation from the private region inside the antenna limiters to the free scrape off layer outside these limiters. Moreover, the cantilevered bars seem to be the element in the screen design that enhanced the plasma potential
This paper reports the progress made at JET-ILW on integrating the requirements of the reference ITER baseline scenario with normalised confinement factor of 1, at a normalised pressure of 1.8 together with partially detached divertor whilst maintaining these conditions over many energy confinement time. The 2.5MA high triangularity ELMy H-modes are studied with two different divertor configurations. The power load reduction with N seeding is reported. The relationship between an increase in energy confinement and pedestal pressure with triangularity is investigated. The operational space of both plasma configurations is studied together the ELM energy losses and stability of the pedestal of unseeded and seeded plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.