A kinetic theory for the electron probe current is presented. The results allow us to infer the electron energy distribution function from the measured electron probe current and its derivatives over a wide range of pressures and magnetic fields.
Nonequilibrium, atmospheric pressure discharges are rapidly becoming an important technological component in material processing applications. Amongst their attractive features is the ability to achieve enhanced gas phase chemistry without the need for elevated gas temperatures. To further enhance the plasma chemistry, pulsed operation with pulse widths in the nanoseconds range has been suggested. We report on a specially designed, dielectric barrier discharge based diffuse pulsed discharge and its electrical characteristics. Two current pulses corresponding to two consecutive discharges are generated per voltage pulse. The second discharge, which occurs at the falling edge of the voltage pulse, is induced by the charges stored on the electrode dielectric during the initial discharge. Therefore, the power supplied to ignite the first discharge is partly stored to later ignite a second discharge when the applied voltage decays. This process ultimately leads to a much improved power transfer to the plasma.
Stable and stationary states with hollow current density profiles have been achieved in Tore Supra with lower hybrid current drive (LHCD) during reduced toroidal magnetic field operation (B t 2 T) and in weak LH absorption regimes. For these plasma conditions, offaxis LH power deposition profiles are obtained in a reproducible manner when the internal LH caustics prevent central absorption of the waves. In the multipass LH wave propagation regime, the validity of the statistical treatment of stochastic wave diffusion is shown both theoretically and experimentally. When a large fraction of the plasma current (above 50%) is non-inductively sustained by the LH waves, the magnetic shear is reversed in the plasma core, i.e. inside a normalized plasma radius of the order of 0.4. The resulting hollow current density profiles have led to an enhancement of the total electron thermal energy content, up to a factor of 1.6 compared with L-mode discharges. The confinement improvement is attributed to a strong reduction of the electron thermal diffusivity in the central reversed shear region, nearly down to its neoclassical level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.