Automated scheduling solutions are tremendously important for the efficient operation of industrial laboratories. The Test Laboratory Scheduling Problem (TLSP) is an extension of the well-known Resource Constrained Project Scheduling Problem (RCPSP) and captures the specific requirements of such laboratories. In addition to several new scheduling constraints, it features a grouping phase, where the jobs to be scheduled are assembled from smaller units. In this work, we introduce an innovative scheduling system that allows the efficient and flexible generation of schedules for TLSP. It features a new Constraint Programming model that covers both the grouping and the scheduling aspect, as well as a hybrid Very Large Neighborhood Search that internally uses the CP model. Our experimental results on generated and real-world benchmark instances show that good results can be obtained even compared to settings which have a good grouping already provided, including several new best known solutions for these instances. Our algorithms for TLSP have been successfully implemented in a real-world industrial test laboratory. We provide a detailed description of the deployed system as well as additional useful soft constraints supported by the solvers and general lessons learned. This includes a discussion of the choice of soft constraint weights, with an analysis on the impact and relation of different objectives to each other. Our experiments show that some soft constraints complement each other well, while others require explicit trade-offs via their relative weights.
Abstract-An equivalent circuit method is used to define ports at the slots of enclosures to separate the external field domain from the internal over a broad frequency range. The aspect ratios of internal to external structures of electronic devices are usually difficult to handle in joint domain simulations. Our method provides the opportunity to simulate the domains separately and to connect the two models afterwards. We present an example for a cubical enclosure with a slot. We use a cavity model and an impedance network at the slot to consider the radiation loss. The results are compared with HFSS ® simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.