This book presents a coherent introduction to boundary integral, boundary element and singularity methods for steady and unsteady flow at zero Reynolds number. The focus of the discussion is not only on the theoretical foundation, but also on the practical application and computer implementation. The text is supplemented with a number of examples and unsolved problems, many drawn from the field of particulate creeping flows. The material is selected so that the book may serve both as a reference monograph and as a textbook in a graduate course on fluid mechanics or computational fluid mechanics.
The deformation of a liquid capsule enclosed by an elastic membrane in an infinite simple shear flow is studied numerically at vanishing Reynolds numbers using a boundary-element method. The surface of the capsule is discretized into quadratic triangular elements that form an evolving unstructured grid. The elastic membrane tensions are expressed in terms of the surface deformation gradient, which is evaluated from the position of the grid points. Compared to an earlier formulation that uses global curvilinear coordinates, the triangular-element formulation suppresses numerical instabilities due to uneven discretization and thus enables the study of large deformations and the investigation of the effect of fluid viscosities. Computations are performed for capsules with spherical, spheroidal, and discoidal unstressed shapes over an extended range of the dimensionless shear rate and for a broad range of the ratio of the internal to surrounding fluid viscosities. Results for small deformations of spherical capsules are in quantitative agreement with the predictions of perturbation theories. Results for large deformations of spherical capsules and deformations of non-spherical capsules are in qualitative agreement with experimental observations of synthetic capsules and red blood cells. We find that initially spherical capsules deform into steady elongated shapes whose aspect ratios increase with the magnitude of the shear rate. A critical shear rate above which capsules exhibit continuous elongation is not observed for any value of the viscosity ratio. This behaviour contrasts with that of liquid drops with uniform surface tension and with that of axisymmetric capsules subject to a stagnation-point flow. When the shear rate is sufficiently high and the viscosity ratio is sufficiently low, liquid drops exhibit continuous elongation leading to breakup. Axisymmetric capsules deform into thinning needles at sufficiently high rates of elongation, independent of the fluid viscosities. In the case of capsules in shear flow, large elastic tensions develop at large deformations and prevent continued elongation, stressing the importance of the vorticity of the incident flow. The long-time behaviour of deformed capsules depends strongly on the unstressed shape. Oblate capsules exhibit unsteady motions including oscillation about a mean configuration at low viscosity ratios and continuous rotation accompanied by periodic deformation at high viscosity ratios. The viscosity ratio at which the transition from oscillations to tumbling occurs decreases with the sphericity of the unstressed shape. Results on the effective rheological properties of dilute suspensions confirm a non-Newtonian shear-thinning behaviour.
The effect of interfacial bending stiffness on the deformation of liquid capsules enclosed by elastic membranes is discussed and investigated by numerical simulation. Flow-induced deformation causes the development of in-plane elastic tensions and bending moments accompanied by transverse shear tensions due to the non-infinitesimal membrane thickness or to a preferred configuration of an interfacial molecular network. To facilitate the implementation of the interfacial force and torque balance equations involving the hydrodynamic traction exerted on either side of the interface and the interfacial tensions and bending moments developing in the plane of the interface, a formulation in global Cartesian coordinates is developed. The balance equations involve the Cartesian curvature tensor defined in terms of the gradient of the normal vector extended off the plane of the interface in an appropriate fashion. The elastic tensions are related to the surface deformation gradient by constitutive equations derived by previous authors, and the bending moments for membranes whose unstressed shape has uniform curvature, including the sphere and a planar sheet, arise from a constitutive equation that involves the instantaneous Cartesian curvature tensor and the curvature of the resting configuration. A numerical procedure is developed for computing the capsule deformation in Stokes flow based on standard boundary-element methods. Results for spherical and biconcave resting shapes resembling red blood cells illustrate the effect of the bending modulus on the transient and asymptotic capsule deformation and on the membrane tank-treading motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.