The oil sorption capacity of nettle fibrous assembly and needle-punched nonwoven structures of 100% nettle and nettle/kapok blends 50/50 and 75/25 were investigated. The porosity of nettle fibrous assembly was varied from 91 to 99% and a maximum oil sorption capacity was 56 g/g and 23.90 g/g for high-density oil and diesel oil, respectively. Porosity of fibrous assembly significantly influenced the oil sorption capacity. It has been observed that an increase in the proportion of kapok fibers in the nettle/kapok blended nonwoven structure increased the oil sorption capacity and reduced water sorption than that of 100% nettle nonwoven. This is because of the inherent hydrophobic property of kapok. However, 100% kapok could not be made into needle-punched nonwoven and hence it has been blended with nettle; 50/50 nettle/kapok blended structure showed maximum oil sorption capacity of 28.5 g/g and 22.5 g/g for high-density oil and diesel oil, respectively, which is higher oil sorption capacity than the commercial polypropylene-based nonwoven. The presence of kapok improved the sorption capacity by 13 to 18% when compared to 100% nettle nonwoven.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.