The importance of mineral dust and aerosols in the transfer of bio-essential elements to terrestrial and marine ecosystems far removed from the source region is well known. Aerosol concentrations measured at the surface over the west coast of India during the SW monsoon period (June to September) are usually very low as pristine maritime air from the Southern Indian Ocean blows over this region. However, we find very high levels of mineral dust and dust derived nutrients in rainwater collected during the SW monsoon period. We show that the dry, warm and dusty Red Sea Wind and Shamal Wind from the Middle-East override the moist oceanic Low-Level Jet (Findlater Jet) of the SW monsoon and transport large quantities of dust at heights between 2 km and 5 km over the Indian Peninsula. A substantial portion is the desert dust is scavenged and wet-deposited over the Western Ghats of India where it neutralizes the acidity of rainwater and provides substantial amounts of nutrients that have the potential to impact sensitive ecosystems in this region. After the Red Sea and Shamal Winds subside in September, the alkaline rainwater reverts to the acidic range due to soluble ions derived from local carbonaceous aerosols.
We report some main results of multidisciplinary investigations carried out within the framework of the Indian National Gas Hydrate Program in [2002][2003] in the Krishna-Godavari Basin offshore sector, east coast of India, to explore indicators of likely gas hydrate occurrence suggested by preliminary multi-channel seismic reflection data and estimates of gas hydrate stability zone thickness. Swath bathymetry data reveal new evidence of three distinct geomorphic units representing (1) a delta front incised by several narrow valleys and mass flows, (2) a deep fan in the east and (3) a WNW-ESE-trending sedimentary ridge in the south.Deep-tow digital side-scan sonar, multi-frequency chirp sonar, and sub-bottom profiler records indicate several surface and subsurface gas-escape features with a highly resolved stratification within the upper 50 m sedimentary strata. Multi-channel seismic reflection data show the presence of bottom simulating reflections of continuous to discrete character. Textural analyses of 76 gravity cores indicate that the sediments are mostly silty clay. Geochemical analyses reveal decreasing downcore pore water sulphate (SO 4 2− ) concentrations (28.7 to <4 mM), increasing downcore methane (CH 4 ) concentrations (0-20 nM) and relatively high total organic carbon contents (1-2.5%), and microbial analyses a high abundance of microbes in top core sediments and a low abundance of sulphate-reducing bacteria in bottom core sediments.Methane-derived authigenic carbonates were identified in some cores. Combined with evidence of gasescape features in association with bottom simulating reflections, the findings strongly suggest that the physicochemical conditions prevailing in the study area are highly conducive to methane generation and gas hydrate occurrence. Deep drilling from aboard the JOIDES Resolution during 2006 has indeed confirmed the presence of gas hydrate in the KrishnaGodavari Basin offshore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.