The embryotoxicity of 4-chloro-2-methylphenoxyacetic acid (MCPA), an extensively used herbicide, has been evaluated and compared to that of phenol and chlorocresol (two common contaminants) with a bioassay that makes use of embryos of the amphibian Xenopus. The MCPA-Na salt used in the bioassay was purified by crystallization and acid-base purification methods, and the concentrations of phenol and chlorocresol were checked by high-performance liquid chromotography. The relationship between the concentration of the tested molecule and the outcomes (i.e., mortality and malformations) was investigated using different models (probit, logit, and complementary log-log). The resulting LC50s for MCPA, chlorocresol, and phenol are 3,607, 13, and 178 mg/L, respectively; the resulting LC10s are 1,526, 6, and 32 mg/L. It is evident that the real MCPA toxicity can be masked by the presence of contaminants much more toxic than the molecule studied. Moreover, our results show that the three chemicals do not present a high teratogenic risk. Growth retardation shows that MCPA, chlorocresol, and phenol are effective at concentrations as low as 2,000, 2.5, and 25 mg/L, respectively.
Keywords-EmbryotoxicTeratogen Herbicide Xenopus EmbryoEnviron. Toxicol. Chem. 15, 1996 G. Bernardini et al.
Abstract-The embryotoxicity of 4-chloro-2-methylphenoxyacetic acid (MCPA), an extensively used herbicide, has been evaluated and compared to that of phenol and chlorocresol (two common contaminants) with a bioassay that makes use of embryos of the amphibian Xenopus. The MCPA-Na salt used in the bioassay was purified by crystallization and acid-base purification methods, and the concentrations of phenol and chlorocresol were checked by high-performance liquid chromotography. The relationship between the concentration of the tested molecule and the outcomes (i.e., mortality and malformations) was investigated using different models (probit, logit, and complementary log-log). The resulting LC50s for MCPA, chlorocresol, and phenol are 3,607, 13, and 178 mg/L, respectively; the resulting LC10s are 1,526, 6, and 32 mg/L. It is evident that the real MCPA toxicity can be masked by the presence of contaminants much more toxic than the molecule studied. Moreover, our results show that the three chemicals do not present a high teratogenic risk. Growth retardation shows that MCPA, chlorocresol, and phenol are effective at concentrations as low as 2,000, 2.5, and 25 mg/L, respectively.
MCPA has been purified by crystallization and its purity for phenol and chlorocresol, present as contaminants of the commercial material, was checked by HPLC. The purified MCPA was used in the chemical reactivity with two catalytic systems manganese(III)tetraphenylporphyrinate-iodosylbenzene and bis[salycilideneethylenediiminocobalt(II)]-dioxygen. The reaction products were studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.