Abstract-The multiband behavior of the fractal Sierpinski antenna is described in this paper. Due to its mainly triangular shape, the antenna is compared to the well-known single-band bow-tie antenna. Both experimental and numerical results show that the self-similarity properties of the fractal shape are translated into its electromagnetic behavior. A deeper physical insight on such a behavior is achieved by means of the computed current densities over the antenna surface, which also display some similarity properties through the bands.
Abstract-Most array factor design techniques are highly dependent on the operating wavelength. In this paper, a novel technique based on fractal structures is described for multiband operation. The analysis is focused in two different approaches: the fractal spatial arrangement of array elements and the fractal design of array factors. Although the patterns of fractal arrays show some interesting similarity properties at several bands, the directivity is not held constant through the bands. Nevertheless, such structures have been shown to be useful for designing low side-lobe arrays with equally weighted current elements. On the other hand, the fractal array factors presented do keep the same shape at several bands because they are designed as selfsimilar curves. The arrays that would synthesize such patterns present a characteristic power-law current distribution analogous to the spectral distribution of the bandlimited fractal Weierstrass function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.