Aims. We present a kinematic study of a sample of 298 planetary nebulas (PNs) in the outer halo of the central Virgo galaxy M87 (NGC 4486). The line-of-sight velocities of these PNs are used to identify sub-components, to measure the angular momentum content of the main M87 halo, and to constrain the orbital distribution of the stars at these large radii. Methods. We use Gaussian mixture modelling to statistically separate distinct velocity components and identify the M87 smooth halo component, its unrelaxed substructures, and the intra-cluster (IC) PNs. We compute probability weighted velocity and velocity dispersion maps for the smooth halo, and its specific angular momentum profile (λ R ) and velocity dispersion profile. Results. The classification of the PNs into smooth halo and ICPNs is supported by their different PN luminosity functions. Based on a K-S test, we conclude that the ICPN line-of-sight velocity distribution (LOSVD) is consistent with the LOSVD of the galaxies in Virgo subcluster A. The surface density profile of the ICPNS at 100 kpc radii has a shallow logarithmic slope, −α ICL ≃ −0.8, dominating the light at the largest radii. Previous B-V colour and resolved star metallicity data indicate masses for the ICPN progenitor galaxies of a few ×10 8 M ⊙ . The angular momentum-related λ R profile for the smooth halo remains below 0.1, in the slow rotator regime, out to 135 kpc average ellipse radius (170 kpc major axis distance). Combining the PN velocity dispersion measurements for the M87 halo with literature data in the central 15 kpc, we obtain a complete velocity dispersion profile out to R avg = 135 kpc. The σ halo profile decreases from the central 400 kms −1 to about 270 kms −1 at 2-10 kpc, then rises again to ≃ 300 ± 50 kms −1 at 50-70 kpc to finally decrease sharply to σ halo ∼ 100 kms −1 at R avg = 135 kpc. The steeply decreasing outer σ halo profile and the surface density profile of the smooth halo can be reconciled with the circular velocity curve inferred from assuming hydrostatic equilibrium for the hot X-ray gas. Because this rises to v c,X ∼ 700 kms −1 at 200 kpc, the orbit distribution of the smooth M87 halo is required to change strongly from approximately isotropic within R avg ∼ 60 kpc to very radially anisotropic at the largest distances probed. Conclusions. The extended LOSVD of the PNs in the M87 halo allows the identification of several subcomponents: the ICPNs, the "crown" accretion event, and the smooth M87 halo. In galaxies like M87, the presence of these sub-components needs to be taken into account to avoid systematic biases in estimating the total enclosed mass. The dynamical structure inferred from the velocity dispersion profile indicates that the smooth halo of M87 steepens beyond R avg = 60 kpc and becomes strongly radially anisotropic, and that the velocity dispersion profile is consistent with the X-ray circular velocity curve at these radii without non-thermal pressure effects.
Context. Early-type galaxies (ETGs) are found to follow a wide variety of merger and accretion histories in cosmological simulations. Aims. We characterize the photometric and kinematic properties of simulated ETG stellar halos, and compare them to the observations. Methods. We selected a sample of 1114 ETGs in the TNG100 simulation and 80 in the higher-resolution TNG50. These ETGs span a stellar mass range of 1010.3 − 1012 M⊙ and they were selected within the range of g − r colour and λ-ellipticity diagram populated by observed ETGs. We determined photometric parameters, intrinsic shapes, and kinematic observables in their extended stellar halos. We compared the results with central IFU kinematics and ePN.S planetary nebula velocity fields at large radii, studying the variation in kinematics from center to halo, and connecting it to a change in the intrinsic shape of the galaxies. Results. We find that the simulated galaxy sample reproduces the diversity of kinematic properties observed in ETG halos. Simulated fast rotators (FRs) divide almost evenly in one third having flat λ profiles and high halo rotational support, a third with gently decreasing profiles, and another third with low halo rotation. However, the peak of rotation occurs at larger R than in observed ETG samples. Slow rotators (SRs) tend to have increased rotation in the outskirts, with half of them exceeding λ = 0.2. For M* > 1011.5 M⊙ halo rotation is unimportant. A similar variety of properties is found for the stellar halo intrinsic shapes. Rotational support and shape are deeply related: the kinematic transition to lower rotational support is accompanied by a change towards rounder intrinsic shape. Triaxiality in the halos of FRs increases outwards and with stellar mass. Simulated SRs have relatively constant triaxiality profiles. Conclusions. Simulated stellar halos show a large variety of structural properties, with quantitative but no clear qualitative differences between FRs and SRs. At the same stellar mass, stellar halo properties show a more gradual transition and significant overlap between the two families, despite the clear bimodality in the central regions. This is in agreement with observations of extended photometry and kinematics.
Context. M49 (NGC 4472) is the dominant galaxy in subcluster B of the Virgo Cluster, and a benchmark for studying the build-up of the extended halos of brightest group galaxies in the outskirts of galaxy clusters. Aims. We investigate the kinematics in the outer halo of M49, look for substructures, and describe the transition to the surrounding intra-group light. Methods. As kinematic tracers we use planetary nebulae (PNe), combining kinematics from the extended Planetary Nebula Spectrograph (PN.S) early-type galaxy survey with our recent deep photometric sample. We study the position-velocity-plane for bright and faint PN populations out to 95 kpc radius, and employ a multi-Gaussian model for the velocity distribution to identify stellar populations with distinct kinematics and histories. Results. We report the detection of stellar-kinematic substructure associated with the interaction of M49 with the dwarf irregular galaxy VCC 1249. We find two kinematically distinct PN populations associated with the main M49 halo and the extended intragroup light (IGL). These have velocity dispersions σ halo 170 km s −1 and σ IGL 400 km s −1 at 10-80 kpc radii. The overall luminosity profile and velocity dispersion at ∼ 80 kpc are consistent with a flat circular velocity curve extrapolated from X-ray observations. The dispersion of the PNe associated with the IGL joins onto that of the satellite galaxies in subcluster B at ∼ 100 kpc radius. This is the first time that the transition from halo to IGL is observed based on the velocities of individual stars. Conclusions. Therefore the halo of M49, consisting of at least three distinct components, has undergone an extended accretion history within its parent group potential. The blue colours of the IGL component are consistent with a population of stars formed in low-mass galaxies at redshift ∼ 0.5 that has since evolved passively, as suggested by other data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.