Grapevine irrigation is becoming an important practice to guarantee wine quality or even plant survival in regions affected by seasonal drought. Nevertheless, irrigation has to be controlled to optimise source to sink balance and avoid excessive vigour. The results we present here in two grapevine varieties (Moscatel and Castelão) during 3 years, indicate that we can decrease the amount of water applied by 50% (as in deficit irrigation, DI, and in partial root drying, PRD) in relation to full crop's evapotranspiration (ETc) [full irrigated (FI) vines] with no negative effects on production and even get some gains of quality (in the case of PRD). We report that in non-irrigated and in several cases in PRD vines exhibit higher concentrations of berry skin anthocyanins and total phenols than those presented by DI and FI vines. We showed that these effects on quality were mediated by a reduction in vigour, leading to an increase on light interception in the cluster zone. Because plant water status during most of the dates along the season was not significantly different between PRD and DI, and when different, PRD even exhibited a higher leaf water potential than DI vines, we conclude that growth inhibition in PRD was not a result of a hydraulic control. The gain in crop water use in DI and PRD was accompanied by an increase of the d 13C values in the berries in DI and PRD as compared to FI, suggesting that we can use this methodology to assess the integrated water-use efficiency over the growing season.
Abstract. A study to assess the effects of the Partial Rootzone Drying (PRD) irrigation strategy in comparison to other irrigation systems was carried out in southern Portugal in two field-grown grapevines varieties, Moscatel and Castelão. We addressed the question of whether by regulating growth and plant water use, the PRD system would enable an equilibrated vegetative development, leading to a favourable capture of solar radiation for photoassimilate production and, at the same time to provide an optimum environment for fruit maturation. Three irrigation schemes were applied in addition to the non-irrigated (NI) vines: partial root drying (PRD), 50% of crop evapotranspiration (ETc), supplied to only one side of the root system while the other one was allowed to dry, alternating sides every 15 days; deficit irrigated (DI), 50% ETc supplied, half to each side of the root system and full irrigated (FI, 100% ETc). During the whole season FI plants of both varieties exhibited a high leaf predawn water potential (ψ pd , ca -0.2 MPa) while a progressive decline was observed in NI plants, reaching ψ pd values near -0.7 MPa at the end of August. PRD and DI presented intermediate values. PRD vines exhibited a stronger control over vegetative growth as compared with DI and FI plants. This was expressed by lower values of total leaf area at harvest, leaf layer number, canopy wideness and water shoots number, allowing a higher light interception at the cluster zone that induced an improvement in some berry quality characteristics. Watering had no significant effects on sugar accumulation in the berries but led to a favourable increase in the must titratable acidity, mainly in Castelão. Whereas in DI and FI treatments berry skin anthocyanins and phenols content were always lower than in NI, in PRD there was either no reduction or the reduction was much lower than in the other irrigation treatments. Water use efficiency (WUE) was increased by about 80% in PRD and DI when compared with FI, as a result of almost similar yields in the three treatments. Yield gains of irrigated plants in relation to NI were modest, explained by the rainy spring in both years.
Abstract. The effects of 'partial rootzone drying' (PRD) irrigation compared with other irrigation systems, namely non-irrigated (NI), full irrigation (FI) and deficit irrigation (DI), on stomatal conductance and carbon assimilation were evaluated in field-grown grapevines (Vitis vinifera L. cv. Moscatel). At the end of the growing season, pre-dawn leaf water potential was highest in FI (-0.18 ± 0.01 MPa; mean ± s.e.), intermediate in PRD (-0.30 ± 0.01 MPa) and DI (-0.36 ± 0.02 MPa), and lowest in NI vines (-0.64 ± 0.03 MPa). Stomatal conductance measured under controlled conditions of light and temperature was reduced in NI (ca 60%) and PRD (ca 30%) vines compared with DI and FI vines. Under ambient conditions, NI vines had lower rates of stomatal conductance (ca 26%), net CO 2 assimilation (ca 28%) and light-adapted PSII quantum yields (ca 47%) than PRD, DI and FI vines. No significant differences were found among the three irrigated treatments. Both maximum electron transport rate (J max ; ca 30%) and triose-phosphate utilization rates (TPU; ca 20%) were significantly lower in NI and PRD vines than in DI and FI vines. Carbon isotope composition (δ 13 C) of grape berries was highest in NI vines (-24.3‰), followed by PRD (-25.4‰) and DI (-25.8‰) and lowest in FI (-26.4‰) vines, suggesting a long-term increase in the efficiency of leaf gas exchange in NI compared with PRD, DI and FI vines. Sap-flow data and estimates of relative stomatal limitation are in accordance with the observed stomatal closure in PRD vines. In this study, we show that PRD irrigation was able to maintain a vine water status closed to FI, but with double water use efficiency, which was due to a reduction of stomatal conductance with no significant decrease in carbon assimilation.
Improvements in water use efficiency of crops are essential under the scenarios of water scarcity predicted by global change models for the Mediterranean region. In recent years, deficit irrigation, including partial root drying (PRD), has been proposed as an irrigation technique to improve water use efficiency and standardize grapevine yield and quality. The objective of this study was to evaluate the impact of deficit irrigation on photosynthetic responses of field grown grapevines of cv. Moscatel and Castelão. The treatments were: full irrigation (FI), corresponding to 100% ET c ; non-irrigated, but rain fed (NI) and partial root zone drying (PRD) and deficit irrigation (DI), both corresponding to an irrigation of 50% ET c . While in the DI treatment water was applied to both sides of the root system, in the PRD treatment, water was supplied to only one side of the root system, alternating sides periodically. In both cultivars, PRD and DI vines showed intermediate pre-dawn leaf water potential (c pd ) values (around À0.4 MPa) while FI vines, showed c pd around À0.2 MPa during the growing season. NI showed the lowest c pd , reaching À0.6 MPa in Moscatel and À0.8 MPa in Castelão, at the end of growing season. Water status of PRD vines remained closer to FI than DI, especially at midday. Photosynthetic rates and fluorescence parameters of the deficit irrigation treatments (PRD and DI) did not show significant differences from FI vines, for most of the season. In Moscatel, although PRD generally showed g s , relative stomatal limitation (RSL) and intrinsic water use efficiency (A/g s ) values closer to NI than DI, most of the differences between PRD and DI were not statistically significant. Our results showed a stability of the photosynthetic machinery in grapevines under low-to-moderate water availabilities, as demonstrated by the maintenance of the activity of three Calvin Cycle enzymes and of the V cmax values. However, a decline in J max was observed in NI vines, that can be a result either of a decrease in ATP production or, alternatively, of decreased mesophyll conductance to CO 2 diffusion. In general terms, stomatal limitation of photosynthesis is likely to be dominant in non-irrigated plants. Deficit irrigation had no negative impact on CO 2 assimilation, despite less water application than in full-irrigation. Differences among varieties may be related to differences in sensitivity of stomata, shoot growth and/or the interaction between rootstock and cultivar to soil water availability. #
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.