The question of the nature of water's glass transition has continued to be disputed over many years. Here we use slow heating scans (0.4 K min^{-1}) of compact amorphous solid water deposited at 77 K and an analysis of the accompanying changes in the small-angle neutron scattering signal, to study mesoscale changes in the ice network topology. From the data we infer the onset of rotational diffusion at 115 K, a sudden switchover from nondiffusive motion and enthalpy relaxation of the network at <121 K to diffusive motion across sample grains and sudden pore collapse at >121 K, in excellent agreement with the glass transition onset deduced from heat capacity and dielectric measurements. This indicates that water's glass transition is linked with long-range transport of water molecules on the time scale of minutes and, thus, clarifies its nature. Furthermore, the slow heating rates combined with the high crystallization resistance of the amorphous sample allow us to identify the glass transition end point at 136 K, which is well separated from the crystallization onset at 144 K-in contrast to all earlier experiments in the field.
Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.
Context. Planetisimals are thought to be formed from the solid material of a protoplanetary disk by a process of dust aggregation. It is not known how growth proceeds to kilometre sizes, but it has been proposed that water ice beyond the snowline might affect this process. Aims. To better understand collisional processes in protoplanetary disks leading to planet formation, the individual low velocity collisions of small ice particles were investigated. Methods. The particles were collided under microgravity conditions on a parabolic flight campaign using a purpose-built, cryogenically cooled experimental setup. The setup was capable of colliding pairs of small ice particles (between 4.7 and 10.8 mm in diameter) together at relative collision velocities of between 0.27 and 0.51 m s −1 at temperatures between 131 and 160 K. Two types of ice particle were used: ice spheres and irregularly shaped ice fragments. Results. Bouncing was observed in the majority of cases with a few cases of fragmentation. A full range of normalised impact parameters (b/R = 0.0-1.0) was realised with this apparatus. Coefficients of restitution were evenly spread between 0.08 and 0.65 with an average value of 0.36, leading to a minimum of 58% of translational energy being lost in the collision. The range of coefficients of restitution is attributed to the surface roughness of the particles used in the study. Analysis of particle rotation shows that up to 17% of the energy of the particles before the collision was converted into rotational energy. Temperature did not affect the coefficients of restitution over the range studied.
Context. Understanding the collisional properties of ice is important for understanding both the early stages of planet formation and the evolution of planetary ring systems. Simple chemicals such as methanol and formic acid are known to be present in cold protostellar regions alongside the dominant water ice; they are also likely to be incorporated into planets which form in protoplanetary disks, and planetary ring systems. However, the effect of the chemical composition of the ice on its collisional properties has not yet been studied. Aims. Collisions of 1.5 cm ice spheres composed of pure crystalline water ice, water with 5% methanol, and water with 5% formic acid were investigated to determine the effect of the ice composition on the collisional outcomes. Methods. The collisions were conducted in a dedicated experimental instrument, operated under microgravity conditions, at relative particle impact velocities between 0.01 and 0.19 m s −1 , temperatures between 131 and 160 K and a pressure of around 10 −5 mbar. Results. A range of coefficients of restitution were found, with no correlation between this and the chemical composition, relative impact velocity, or temperature. Conclusions. We conclude that the chemical composition of the ice (at the level of 95% water ice and 5% methanol or formic acid) does not affect the collisional properties at these temperatures and pressures due to the inability of surface wetting to take place. At a level of 5% methanol or formic acid, the structure is likely to be dominated by crystalline water ice, leading to no change in collisional properties. The surface roughness of the particles is the dominant factor in explaining the range of coefficients of restitution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.