Nowadays, natural fibre-reinforced composites find applications in almost all engineering fields. This work is an attempt to realise improvement in dynamic characteristics of micro lathe bed using Himalayan nettle (Girardinia heterophylla) polyester (NP) composite as an alternate material. In order to study and validate the improvements envisaged, a cast iron micro lathe bed is considered as reference. Numerical (FE) model of the cast iron micro lathe bed was developed and validated through experimental static and modal analysis. Finite element analysis of the micro lathe bed with the existing cast iron material as well as with nettle-polyester composite as alternate material was also carried out using worst case cutting forces, and based on the relative performances, the need for form design modification for the proposed material was identified. To enhance the bending and torsional stiffness of the nettle-polyester composite lathe bed, various cross sections and rib configurations were studied and the best among them was identified and the same was implemented in the nettle-polyester composite micro lathe bed design. Finite element analysis of the newly designed nettle-polyester composite micro lathe bed was performed and the improvements in dynamic characteristics were evaluated. The newly designed nettle-polyester composite micro lathe bed was fabricated and the predicted enhancement in static and dynamic characteristics was verified experimentally. The studies indicated that nettle-polyester composite could be considered as a suitable alternate to cast iron structures in machine tools.
Integration of lead zirconate titanate (PZT) thin film on diamond substrate offers a great deal of potential for the application of multifunctional devices under extreme conditions. However, fabrication of perovskite PZT thin films on diamond substrate without a buffer layer has not been realized to date. We report for the first time on the successful deposition of PZT thin film directly on a diamond substrate without any buffer layer using the pulsed-laser deposition technique. The perovskite phase was realized only under specific growth conditions. X-ray diffraction and Raman studies confirmed the perovskite phase. The ferroelectric behaviour of the deposited PZT thin film was confirmed using piezo response microscope phase image and ferroelectric hysteresis loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.