The objective of this study was to test the hypothesis that feed additives such as chelated minerals, organic Se, yeast culture, direct-fed microbials, and Yucca schidigera extract would improve nutrient digestibility when included in an equine diet. Horses (Quarter Horse geldings 4.5 to 16 yr of age; mean BW 522 kg ± 46 kg) were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) commercially available sources of the aforementioned additives followed by a 14-d collection period of feces and urine. Chelated sources of Cu, Zn, Mn and Co were utilized versus sulfated forms, at a 100% replacement rate. No significant differences among apparent the digestibility of DM, ADF, or NDF (P= 0.665, P = 0.866, P = 0.747, respectively) were detected between dietary treatments. Likewise, no differences in apparent digestibility of Cu (P = 0.724), Zn (P = 0.256), Mn (P = 0.888), Co (P = 0.71), or Se (P = 0.588) were observed. No differences were observed in serum Cu, Mn, or Co concentrations between ADD and CTRL at acclimation or collection time points (P > 0.05). While no difference in serum Zn concentrations were observed between ADD and CTRL groups at acclimation (P > 0.05), they were statistically higher at the collection time period for horses consuming CTRL (P < 0.0001). Whole blood Se concentration was greater in the CTRL group versus the ADD group both at acclimation (P = 0.041) and collection (P = 0.005) time periods. In reference to time, serum Cu concentrations increased (P = 0.012) for animals consuming CTRL, but not ADD (P > 0.05). Serum Zn concentrations of horses consuming both ADD (P = 0.021) and CTRL (P < 0.0001) increased over time from acclimation to collection time points. No time differences (P > 0.05) were observed in serum Mn concentrations. Serum Co concentrations increased over time in horses consuming both ADD (P = 0.001) and CTRL (P = 0.021). From acclimation to collection, whole blood Se concentration increased for horses consuming CTRL (P = 0.01) but not for ADD (P > 0.05). The results of this study indicate no effect on nutrient digestibility due to the inclusion of chelated minerals, organic Se, yeast culture, direct-fed microbials, and Yucca schidigera extract for horses at maintenance.
COMPLETION OF AN IN VIVO DIGESTIBILITY TRIAL IN HORSES AND IN VITRO DIGESTIBILITY ASSAY DEVELOPMENT Cassandra Renee SweeneyIn vivo analysis of equine feed digestibility has been the gold standard since the late 1800's, although it can be time consuming, costly, and labor intensive. In vitro digestibility analysis may be more economical and beneficial to both feed manufacturers and consumers. The availability of accurate in vivo data is crucial for critical evaluation and validation of any potential in vitro method (Coles et al., 2005). Ten adult American quarter horse geldings were used in the in vivo digestibility evaluation of two complete pelleted feeds fed as 100% of intake. The ingredients of the two treatments were similar: wheat middlings, rice hulls, alfalfa and beet pulp. The treatments differed in added mineral sources, yeast, direct fed microbials, and Yucca schidigera extract, added to enhance dry matter digestibility of the test diet. The in vivo evaluation consisted of two phases in a randomized crossover design. Total daily dry matter intake (DMI) and daily dry matter excretion (DME) were measured. Apparent digestibility (aDig) of % DM, % NDF, % ADF, % ADL om , and % OM (DM) were also calculated. No differences were seen in aDig of NDF, ADF, ADL OM or OM between the two experimental diets (P > 0.05). There was also no difference in DMI or DME, as a percentage of body weight (BW), between the two experimental diets. The effect of phase was not significant for all tests run on aDig, DMI, and DME (P > 0.05). BW was not significantly different (P > 0.05) between diets, however there was a trend for v heavier BW during phase 2 (P = 0.073). In vitro digestibility assay development followed the in vivo evaluation. A three-stage batch system as briefly described by Boisen and Fernandez (1997) needed for species-specific use, the methods described here can provide the foundation for future in vitro digestibility studies.vi ACKNOWLEDGMENTS
The objective of this study was to test the hypothesis that an equine diet formulated with chelated trace minerals, organic selenium, yeast culture, direct-fed microbials (DFM) and Yucca schidigera extract would decrease excretion of nutrients that have potential for environmental impact. Horses were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) the aforementioned additives. Chelated sources of Cu, Zn, Mn, and Co were included in the ADD diet at a 100% replacement rate of sulfate forms used in the CTRL diet. Additionally, the ADD diet included organic selenium yeast, DFM, and Yucca schidigera extract. Ten horses were fed the 2 experimental diets during two 42-d periods in a crossover design. Total fecal and urine collection occurred during the last 14 d of each period. Results indicate no significant differences between Cu, Zn, Mn, and Co concentrations excreted via urine (P > 0.05) due to dietary treatment. There was no difference between fecal Cu and Mn concentrations (P > 0.05) based on diet consumed. Mean fecal Zn and Co concentrations excreted by horses consuming ADD were greater than CTRL (P < 0.003). Differences due to diet were found for selenium fecal (P < 0.0001) and urine (P < 0.0001) excretions, with decreased concentrations found for horses consuming organic selenium yeast (ADD). In contrast, fecal K (%) was greater (P = 0.0421) for horses consuming ADD, whereas concentrations of fecal solids, total N, ammonia N, P, total ammonia, and fecal output did not differ between dietary treatments (P > 0.05). In feces stockpiled to simulate a crude composting method, no differences (P > 0.05) due to diet were detected for particle size, temperature, moisture, OM, total N, P, phosphate, K, moisture, potash, or ammonia N (P > 0.05). Although no difference (P = 0.2737) in feces stockpile temperature due to diet was found, temperature differences over time were documented (P < 0.0001). In conclusion, the addition of certain chelated mineral sources, organic Se yeast, DFM, and Yucca schidigera extract did not decrease most nutrient concentrations excreted. Horses consuming organic selenium as part of the additive diet had lower fecal and urine Se concentrations, as well as greater fecal K concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.