Electrical stimulation has been used in a wide variety of medical implant applications. In all of these applications, due to safety concerns, maintaining charge balance becomes a critically important issue that needs to be addressed at the design stage. It is important that charge balancing schemes be robust to circuit (process) and load impedance variations, and at the same time must also lend themselves to miniaturization. In this communication, simulation studies on the effectiveness of using Proportional Integral (P-I) control schemes for managing charge balance in electrical stimulation are presented. The adaptation of the P-I control scheme to implant circuits leads to two possible circuit realizations in the analog domain. The governing equations for these realizations are approximated to simple linear equations. Considering typical circuit and tissue parameter values and their expected uncertainties, Matlab as well as circuit simulations have been carried out. Simulation results presented indicate that the tissue voltages settle to well below 20% of the safe levels and within about 20 stimulations cycles, thus confirming the validity and robustness of the proposed schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.