Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.
Head and neck squamous cell carcinomas (HNSCCs) are caused by tobacco and alcohol consumption and by infection with high-risk types of human papillomavirus (HPV). Tumours often develop within preneoplastic fields of genetically altered cells. The persistence of these fields after treatment presents a major challenge, because it might lead to local recurrences and second primary tumours that are responsible for a large proportion of deaths. Aberrant signalling pathways have been identified in HNSCCs and inhibition of epidermal growth factor receptor (EGFR) has proved a successful therapeutic strategy. In this Review, we discuss the recent literature on tumour heterogeneity, field cancerization, molecular pathogenesis and the underlying causative cancer genes that can be exploited for novel and personalized treatments of patients with HNSCC.
Most head and neck cancers are derived from the mucosal epithelium in the oral cavity, pharynx and larynx and are known collectively as head and neck squamous cell carcinoma (HNSCC). Oral cavity and larynx cancers are generally associated with tobacco consumption, alcohol abuse or both, whereas pharynx cancers are increasingly attributed to infection with human papillomavirus (HPV), primarily HPV-16. Thus, HNSCC can be separated into HPV-negative and HPV-positive HNSCC. Despite evidence of histological progression from cellular atypia through various degrees of dysplasia, ultimately leading to invasive HNSCC, most patients are diagnosed with late-stage HNSCC without a clinically evident antecedent pre-malignant lesion. Traditional staging of HNSCC using the tumour-node-metastasis system has been supplemented by the 2017 AJCC/UICC staging system, which incorporates additional information relevant to HPV-positive disease. Treatment is generally multimodal, consisting of surgery followed by chemoradiotherapy (CRT) for oral cavity cancers and primary CRT for pharynx and larynx cancers. The EGFR monoclonal antibody cetuximab is generally used in combination with radiation in HPV-negative HNSCC where comorbidities prevent the use of cytotoxic chemotherapy. The FDA approved the immune checkpoint inhibitors pembrolizumab and nivolumab for treatment of recurrent or metastatic HNSCC and pembrolizumab as primary treatment for unresectable disease. Elucidation of the molecular genetic landscape of HNSCC over the past decade has revealed new opportunities for therapeutic intervention. Ongoing efforts aim to integrate our understanding of HNSCC biology and immunobiology to identify predictive biomarkers that will enable delivery of the most effective, least-toxic therapies.
Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal linings of the upper aerodigestive tract and are unexpectedly heterogeneous in nature. Classical risk factors are smoking and excessive alcohol consumption, and in recent years, the role of human papillomavirus (HPV) has emerged, particularly in oropharyngeal tumours. HPV-induced oropharyngeal tumours are considered a separate disease entity, which recently has manifested in an adapted prognostic staging system while the results of de-intensified treatment trials are awaited. Carcinogenesis caused by HPV in the mucosal linings of the upper aerodigestive tract remains an enigma, but with some recent observations, a model can be proposed. In 2015, The Cancer Genome Atlas (TCGA) consortium published a comprehensive molecular catalogue on HNSCC. Frequent mutations of novel druggable oncogenes were not demonstrated, but the existence of a subgroup of genetically distinct HPV-negative head and neck tumours with favourable prognoses was confirmed. Tumours can be further subclassified based on genomic profiling. However, the amount of molecular data is currently overwhelming and requires detailed biological interpretation. It also became apparent that HNSCC is a disease characterized by frequent mutations that create neoantigens, indicating that immunotherapies might be effective. In 2016, the first results of immunotherapy trials with immune checkpoint inhibitors were published, and these may be considered as a paradigm shift in head and neck oncology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.