Slope flow mechanisms are crucial for the transport of air pollutants in complex terrain. Previous observations in sloping terrain showed upslope flows filling the entire convective boundary layer (CBL) and reducing air pollution concentrations by venting air pollutants out of the CBL into the free atmosphere. During the Pacific 2001 Air Quality Field Study in the Lower Fraser Valley, British Columbia, Canada, we observed slope flows during weak synoptic winds, clear skies, and strong daytime solar heating. With a Doppler sodar we measured the three wind components at the foot of a slope having an average angle of 19 and a ridge height of 780 m. We operated a scanning lidar system and a tethersonde at a nearby site on the adjacent plain to measure backscatter of particulate matter, temperature, wind speed, wind direction, and specific humidity. Strong daytime upslope flows of up to 6 m s À1 through a depth of up to 500 m occurred in the lower CBL, but with often equally strong and deep return flows in the upper part of the CBL. The mass transport of upslope flow and return flow approximately balanced over a 4-h morning period, suggesting a closed slope-flow circulation within the CBL. These observations showed that air pollutants can remain trapped within a CBL rather than being vented from the CBL into the free atmosphere.
[1] Heated mountain slopes sometimes vent air pollutants out of the boundary layer over the slope top and at other times trap pollutants in closed circulations. Field, numerical, and water tank studies of fair weather atmospheric conditions over complex terrain have shown more complicated vertical distributions of temperature, moisture, and aerosols than over horizontal terrain. To study these phenomena, we analyze flow fields, densities, and dye distributions in a bottom-heated salt-stratified water tank over a 19°slope with adjacent plain and plateau and compare with field and numerical model data. Vertical layering of dye results from upslope and plain-plateau circulations. The thermal boundary layer (TBL, the bottom layer up to neutral buoyancy height), coincides with the lower branches of these circulations. The return flow branches form elevated layers (EL) with properties intermediate between the TBL and environmental background. As heating continues, the TBL rapidly entrains the ELs, leading to deeper circulations with new ELs at greater heights. Field data suggest that successive formation and entrainment of ELs occurs at multiple scales in the atmosphere. If the aerosol loading of an EL is too high to distinguish it from the underlying TBL on lidar backscatter scans, then both layers and the associated closed circulation appear embedded in one deep backscatter boundary layer. The findings suggest defining the atmospheric boundary layer in complex terrain on the diurnal heating timescale rather than the commonly used 1-hour timescale, which is more appropriate for flat terrain. We discuss conditions leading to venting versus trapping of air pollutants.Citation: Reuten, C., D. G. Steyn, and S. E. Allen (2007), Water tank studies of atmospheric boundary layer structure and air pollution transport in upslope flow systems,
A mechanistic exploration of how ozone formation in the Lower Fraser Valley (LFV) has changed over a 20-year (1985-2005) retrospective period was performed using numerical models, observations, and emissions data from four key episodes selected from the 20-year period. The motivation for this study was the observed differences in trends in summertime episodic ozone concentrations recorded at various monitoring stations within the valley; stations in the western part of the valley have generally shown a noticeable reduction in episodic ozone concentrations whereas stations in the eastern part of the valley have shown little or no improvement in their maximum 8-hour averaged ozone concentrations. Concurrent with these air quality changes, there has been a well-documented reduction in ozone precursor emissions along with an observed shift in the population patterns within the valley over the 20-year period. Ozone formation for four episodes, encompassing the different meteorological regimes that occur during LFV ozone events and spanning the retrospective period, were investigated using the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emission (SMOKE)-Community Multiscale Air Quality (CMAQ) modelling system. For each episode, two simulations, intended to isolate the effects of emission changes from meteorological changes, were performed: one with emissions set at the 1985 level and the other with emissions set at the 2005 level. Based on analysis of the model output, observational data, and precursor emission inventories, we find that the Port Moody station in the western LFV remains a volatile organic compound (VOC)-sensitive location; the central part of the LFV around the town of Chilliwack has generally changed from being VOC-limited to being NO x -limited; the easternmost part of the valley around the town of Hope has been and remains NO x -limited. Furthermore, based on the observational data and numerical model output, ozone production efficiency as a function of NO has increased noticeably at Chilliwack and likely in the other eastern parts of the valley. This efficiency increase has likely offset some of the benefits resulting from local NO x emission reductions.RÉSUMÉ [Traduit par la rédaction] Nous avons effectué une exploration mécaniste de la façon dont la formation de l'ozone dans la vallée du bas Fraser (VBF) a changé au cours d'une période rétrospective de 20 ans (1985-2005) en nous servant de modèles numériques, d'observations et de données sur les émissions pour quatre épisodes clés choisis dans la période de 20 ans. Ce sont les différences observées entre les tendances dans les concentrations épisodiques d'ozone enregistrées à certaines stations de surveillance dans la vallée qui ont motivé cette étude : les stations dans la partie ouest de la vallée ont généralement affiché une réduction notable des concentrations épisodiques d'ozone alors que les stations dans la partie est de la vallée n'ont montré que peu ou pas d'amélioration dans les valeurs maximales des ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.