Constant-torsion emergent gravity (CTEG) has a Lagrangian quadratic in curvature and torsion, but without any Einstein-Hilbert term. CTEG is motivated by a unitary, power-counting renormalisable particle spectrum. The timelike axial torsion adopts a vacuum expectation value, and the Friedmann cosmology emerges dynamically on this torsion condensate. We show that this mechanism -and the whole background cosmology of CTEG -may be understood through the effective potential of a canonical single scalar field model. The effective potential allows for hilltop inflation in the early Universe. In the late Universe, the Hubble friction overdamps the final quadratic approach to the effective minimum at the condensate, where the value of the potential becomes the cosmological constant. We do not consider particle production through spin-torsion coupling, or running of Lagrangian parameters. The model must be completed if reheating and a separation of inflationary and dark energy scales are to be understood. It is suggested that the divergence of the potential at large values of the scalar is inconsistent with the linearised propagator analysis of CTEG around zero-torsion Minkowski spacetime. This background may therefore be a strongly coupled surface in CTEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.