Aberrant DNA methylation is an important epigenetic alteration in hepatocellular carcinoma (HCC). However, the molecular processes underlying the methylator phenotype and the contribution of hepatitis viruses are poorly understood. The current study is a comprehensive methylation analysis of human liver tissue specimens. A total of 176 liver tissues, including 77 pairs of HCCs and matching noncancerous liver and 22 normal livers, were analyzed for methylation. Methylation of 19 epigenetic markers was quantified, and the results were correlated with different disease states and the presence or absence of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. Based on methylation profiles, the 19 loci were categorized into 3 groups. Normal liver tissues showed methylation primarily in group 1 loci (HIC-1, CASP8, GSTP1, SOCS1, RASSF1A, p16, APC), which was significantly higher than group 2 (CDH1, RUNX3, RIZ1, SFRP2, MINT31) and group 3 markers (COX2, MINT1, CACNA1G, RASSF2, MINT2, Reprimo, DCC) (P < 0.0001). Noncancerous livers demonstrated increased methylation in both group 1 and group 2 loci. Methylation was significantly more abundant in HCV-positive livers compared with normal liver tissues. Conversely, HCC showed frequent methylation at each locus investigated in all 3 groups. However, the group 3 loci showed more dense and frequent methylation in HCV-positive cancers compared with both HBV-positive cancers and virus-negative cancers (P < 0.0001). Conclusion: Methylation in HCC is frequent but occurs in a gene-specific and disease-specific manner. Methylation profiling allowed us to determine that aberrant methylation is commonly present in normal aging livers, and sequentially progresses with advancing stages of chronic viral infection. Finally, our data provide evidence that HCV infection may accelerate the methylation process and suggests a continuum of increasing methylation with persistent viral infection and carcinogenesis in the liver. (HEPATOLOGY 2008;47:908-918.)
IntroductionAutophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn's disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor α (TNFα), both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB), which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells.MethodsWe measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNFα- and IFNγ-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A1 or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine.ResultsTNFα and IFNγ-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNFα-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability.ConclusionsDecreased PHB levels coupled with dysfunctional autophagy renders intestinal epithelial cells susceptible to mitochondrial damage and cytotoxicity. Repletion of PHB may represent a therapeutic approach to combat oxidant and cytokine-induced mitochondrial damage in diseases such as inflammatory bowel disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.