The family of tumor necrosis factor receptors (TNFRs) and their ligands form a regulatory signaling network that controls immune responses. Various members of this receptor family respond differently to the soluble and membrane-bound forms of their respective ligands. However, the determining factors and underlying molecular mechanisms of this diversity are not yet understood. Using an established system of chimeric TNFRs and novel ligand variants mimicking the bioactivity of membranebound TNF (mTNF), we demonstrate that the membrane-proximal extracellular stalk regions of TNFR1 and TNFR2 are crucial in controlling responsiveness to soluble TNF (sTNF). We show that the stalk region of TNFR2, in contrast to the corresponding part of TNFR1, efficiently inhibits both the receptor's enrichment/clustering in particular cell membrane regions and ligandindependent homotypic receptor preassembly, thereby preventing sTNF-induced, but not mTNF-induced, signaling. Thus, the stalk regions of the two TNFRs not only have implications for additional TNFR family members, but also provide potential targets for therapeutic intervention.
Purpose-Endometrial cancer (EC) is the most common gynecologic malignancy. Type I EC has a favorable prognosis, while type II ECs account for half of all treatment failures. Little knowledge of the biological differences is available to predict EC outcomes besides their pathological distinctions. MicroRNAs (miRNA) are a family of non-translated RNAs important in regulating oncogenic pathways. Mis-expression patterns of miRNAs in EC, as well as differences in miRNA expression patterns between the subtypes of EC has not been previously evaluated. Our purpose was to identify miRNA profiles of EC subtypes, and to identify miRNAs associated with these subtypes to ultimately understand the different biological behavior between these subtypes.Methods-95 fresh/frozen and paraffin embedded samples of endometrial type I and II cancer, carcinosarcomas and benign endometrial samples were collected. MiRNA expression profiles were evaluated by microarray analysis. Statistical analysis was performed.Results-Distinct miRNA signatures in tumor versus normal samples and in endometrioid vs. uterine papillary serous carcinomas exist. Additionally, carcinosarcomas have a unique miRNA signature from either the type I or II epithelial tumors.Conclusions-We hypothesize that further understanding the miRNAs that separate these subtypes of EC will lead to biological insights into the different behavior of these tumors.
BACKGROUND Emerging evidence has suggested that the capability to sustain tumor formation, growth, and chemotherapy resistance in ovarian as well as other human malignancies exclusively resides in a small proportion of tumor cells termed cancer stem cells. During the characterization of CD44+ ovarian cancer stem cells, we found a high expression of the genes encoding for claudin-4. Because this tight junction protein is the natural high-affinity receptor for Clostridium perfringens enterotoxin (CPE), we have extensively investigated the sensitivity of ovarian cancer stem cells to CPE treatment in vitro and in vivo. METHODS Real-time polymerase chain reaction and flow cytometry were used to evaluate claudin-3/-4 expression in ovarian cancer stem cells. Small interfering RNA knockdown experiments and MTS assays were used to evaluate CPE-induced cytotoxicity against ovarian cancer stem cell lines in vitro. C.B-17/SCID mice harboring ovarian cancer stem cell xenografts were used to evaluate CPE therapeutic activity in vivo. RESULTS CD44+ ovarian cancer stem cells expressed claudin-4 gene at significantly higher levels than matched autologous CD44− ovarian cancer cells, and regardless of their higher resistance to chemotherapeutic agents died within 1 hour after exposure to 1.0 μg/mL of CPE in vitro. Conversely, small-interfering RNA-mediated knockdown of claudin-3/-4 expression in CD44+ cancer stem cells significantly protected cancer stem cells from CPE-induced cytotoxicity. Importantly, multiple intraperitoneal administrations of sublethal doses of CPE in mice harboring xenografts of chemotherapy-resistant CD44+ ovarian cancer stem cells had a significant inhibitory effect on tumor progression leading to the cure and/or long-term survival of all treated animals (ie, 100% reduction in tumor burden in 50% of treated mice; P < .0001). CONCLUSIONS CPE may represent an unconventional, potentially highly effective strategy to eradicate chemotherapy-resistant cancer stem cells.
BackgroundDevelopment of innovative, effective therapies against recurrent/chemotherapy-resistant ovarian cancer remains a high priority. Using high-throughput technologies to analyze genetic fingerprints of ovarian cancer, we have discovered extremely high expression of the genes encoding the proteins claudin-3 and claudin-4.MethodsBecause claudin-3 and -4 are the epithelial receptors for Clostridium perfringens enterotoxin (CPE), and are sufficient to mediate CPE binding, in this study we evaluated the in vitro and in vivo bioactivity of the carboxy-terminal fragment of CPE (i.e., CPE290-319 binding peptide) as a carrier for tumor imaging agents and intracellular delivery of therapeutic drugs. Claudin-3 and -4 expression was examined with rt-PCR and flow cytometry in multiple primary ovarian carcinoma cell lines. Cell binding assays were used to assess the accuracy and specificity of the CPE peptide in vitro against primary chemotherapy-resistant ovarian carcinoma cell lines. Confocal microscopy and biodistribution assays were performed to evaluate the localization and uptake of the FITC-conjugated CPE peptide in established tumor tissue.ResultsUsing a FITC-conjugated CPE peptide we show specific in vitro and in vivo binding to multiple primary chemotherapy resistant ovarian cancer cell lines. Bio-distribution studies in SCID mice harboring clinically relevant animal models of chemotherapy resistant ovarian carcinoma showed higher uptake of the peptide in tumor cells than in normal organs. Imunofluorescence was detectable within discrete accumulations (i.e., tumor spheroids) or even single chemotherapy resistant ovarian cancer cells floating in the ascites of xenografted animals while a time-dependent internalization of the FITC-conjugated CPE peptide was consistently noted in chemotherapy-resistant ovarian tumor cells by confocal microscopy.ConclusionsBased on the high levels of claudin-3 and -4 expression in chemotherapy-resistant ovarian cancer and other highly aggressive human epithelial tumors including breast, prostate and pancreatic cancers, CPE peptide holds promise as a lead peptide for the development of new diagnostic tracers or alternative anticancer agents.
Local recurrence after treatment of breast cancer with mastectomy + radiotherapy +/- systemic therapy is associated with a significantly higher risk of distant metastases and death. In this analysis, local recurrence was a strong and, besides lymph node status and T category, an independent risk factor for survival. Minimizing the risk of local recurrence is therefore an essential goal of a curative treatment concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.