Objective:Energy drinks (EDs) target young and active individuals and they are being marketed as enhancers of energy, concentration, and physical and cognitive performance. Their long-term consumption raises serious health concerns related to cardiovascular events. Here we investigate the effects of long-term Red Bull® consumption and its combination with alcohol on certain biochemical parameters and the ultrastructure of the myocardium.Methods:Male Wistar rats were categorized into four groups and given different treatments via oral administration. The Control (C) group received tap water, the Red Bull (RB) group received 1.5 ml/100 g body weight of Red Bull, the ethanol group (E) received 0.486 mg/100 g body weight of ethanol, and the Red Bull and ethanol (RBE) received a combination of the two beverages for 30 days. In the last 6 days of the experiment, the animals were tested for their physical performance by conducting a weight-loaded forced swim test. Immediately after swimming exhaustion, the animals were sacrificed under anesthesia and samples of the heart muscle were harvested for ultrastructural and biochemical analyses.Results:Our results showed a significant increase in the heart glucose and glycogen concentrations in the RB and RBE groups. Total cholesterol concentration significantly decreased in the RBE and RB groups. Total protein concentration and ALT and AST activities increased in all groups. The biochemical changes were accompanied by ultrastructural alterations.Conclusion:Based on these results, we recommend that athletes and active persons should avoid the long-term consumption of the Red Bull ED and, particularly, its combination with alcohol.
Context and objective. In this study, we aimed to investigate how moderate physical activity improves the bone ultrastructural parameters in rats with glucocorticoidinduced secondary osteoporosis. Animals and Methods. Research has been carried out on Wistar female rats. Secondary osteoporosis was induced through daily i.m.1.5 mg/kgbw methylprednisolone, over a period of 30 days. A group of rats with induced secondary osteoporosis were subjected to physical activity (swimming) for one hour/day for 30 days. Rats were sacrificed 24 hours after the last administration and femoral bones were used for electron microscopy analysis. Results. The ultrastructural findings obtained from the rats with osteoporosis showed varying degrees of alteration in all cellular components. A moderate physical effort led to the overall maintenance of the normal ultrastructure of the cells and connective components, protecting the lamellar structure of the compact bone from the deleterious effects of glucocorticoid. The shape and components of osteocytes were also preserved and the accumulation of lipids in the bone marrow diminished. Conclusions. Physical exercise has been shown to have a protective role by lowering the development of structural alterations specific to osteoporosis. Therefore, moderate physical exercises are recommended for improving the structure of the bone mass affected by glucocorticoid treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.