The cystic fibrosis transmembrane conductance regulator (CFTR) represents the main Cl Ϫ channel in the apical membrane of epithelial cells for cAMP-dependent Cl Ϫ secretion. Here we report on the synthesis and screening of a small library of nontoxic ␣-aminoazaheterocycle-methylglyoxal adducts, inhibitors of wild-type (WT) CFTR and G551D-, G1349D-, and F508del-CFTR Cl Ϫ channels. In whole-cell patch-clamp experiments of Chinese hamster ovary (CHO) cells expressing WT-CFTR, we recorded rapid and reversible inhibition of forskolin-activated CFTR currents in the presence of the adducts 5a and 8a,b at 10 pM concentrations. Using iodide efflux experiments, we compared concentration-dependent inhibition of CFTR with glibenclamide (IC 50 ϭ 14.7 M), 3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl-)methylene]-2-thioxo-4-thiazolidinone (CFTR inh -172) (IC 50 ϭ 1.2 M), and ␣-aminoazaheterocycle-methylglyoxal adducts and identified compounds 5a (IC 50 ϭ 71 pM), 8a,b (IC 50 ϭ
A remarkable stereoselective reaction of methylglyoxal with 2-aminopyridine, the nucleic base adenine and adenine nucleosides leads in good yield to heterocycles of a new family in water under mild conditions and should be of interest in the understanding of the biological effects of methylglyoxal which is toxic, mutagenic and involved in diabetic complications.
One of the major therapeutic strategy in cystic fibrosis aims at developing modulators of cystic fibrosis transmembrane conductance regulator (CFTR) channels. We recently discovered methylglyoxal a-aminoazaheterocycle adducts, as a new family of CFTR inhibitors. In a structure-activity relationship study, we have now identified GPact-11a, a compound able not to inhibit but to activate CFTR.Here, we present the effect of GPact-11a on CFTR activity using in vitro (iodide efflux, fluorescence imaging and patch-clamp recordings), ex vivo (short-circuit current measurements) and in vivo (salivary secretion) experiments.We report that GPact-11a: 1) is an activator of CFTR in several airway epithelial cell lines; 2) activates rescued F508del-CFTR in nasal, tracheal, bronchial, pancreatic cell lines and in human CF ciliated epithelial cells, freshly dissociated from lung samples; 3) stimulates ex vivo the colonic chloride secretion and increases in vivo the salivary secretion in cftr +/+ but not cftr -/-mice; and 4) is selective for CFTR because its effect is inhibited by CFTR inh -172, GlyH-101, glibenclamide and GPinh-5a. To conclude, this work identifies a selective activator of wild-type and rescued F508del-CFTR. This nontoxic and water-soluble agent represents a good candidate, alone or in combination with a F508del-CFTR corrector, for the development of a CFTR modulator in cystic fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.