At su ciently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP) 1 . Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed 2-6 . Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions 7 , is more pronounced for multi-strange baryons. Several e ects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions 8,9 , but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results 10,11 , indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.The production of strange hadrons in high-energy hadronic interactions provides a way to investigate the properties of quantum chromodynamics (QCD), the theory of strongly interacting matter. Unlike up (u) and down (d) quarks, which form ordinary matter, strange (s) quarks are not present as valence quarks in the initial state, yet they are sufficiently light to be abundantly created during the course of the collisions. In the early stages of high-energy collisions, strangeness is produced in hard (perturbative) 2 → 2 partonic scattering processes by flavour creation (gg → ss, qq → ss) and flavour excitation (gs → gs, qs → qs). Strangeness is also created
Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at √ sNN = 130 GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freezeout. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.
We report measurements of transverse momentum p t spectra for ten event multiplicity classes of p-p collisions at s p 200 GeV. By analyzing the multiplicity dependence we find that the spectrum shape can be decomposed into a part with amplitude proportional to multiplicity and described by a Lévy distribution on transverse mass m t , and a part with amplitude proportional to multiplicity squared and described by a Gaussian distribution on transverse rapidity y t . The functional forms of the two parts are nearly independent of event multiplicity. The two parts can be identified with the soft and hard components of a two-component model of p-p collisions. This analysis then provides the first isolation of the hard component of the p t spectrum as a distribution of simple form on y t .
Collisions of Au on Au at incident energies of 150, 250 and 400 A MeV were studied with the FOPI-facility at GSI Darmstadt. Nuclear charge (Z ≤ 15) and velocity of the products were detected with full azimuthal acceptance at laboratory angles 1 • ≤ θ lab ≤ 30 • . Isotope separated light charged particles were measured with movable multiple telescopes in an angular range of 6 − 90 • . Central collisions representing about 1% of the reaction cross section were selected by requiring high total transverse energy, but vanishing sideflow. The velocity space distributions and yields of the emitted fragments are reported. The data are analysed in terms of a thermal model including radial flow. A comparison with predictions of the Quantum Molecular Model is presented.PACS: 25.70.Pq
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.