This paper summarizes current understanding and predictive simulations of gettering processes predominantly applied in silicon photovoltaics. Special emphasis is put on various processes limiting gettering efficiency and kinetics, i.e. the mobility of interstitially dissolved metal species, the formation of the gettering layer, and the effect of immobile metal species. The latter are substitutional metal species, precipitates, complexes with defects related to non-metallic impurities, and finally the interaction with extended defects, in particular dislocations. Finally, alternative annealing schemes involving high-temperature rapid thermal processing are explored by simulations. It is shown that a processing window exists for a two-step process efficient for the removal of precipitates even under the constraints of a fixed thermal budget for phosphorus diffusion.
The development of beech leaves ( Fagus sylvatica L.) was characterized by determination of the pigment and electrolyte concentrations as well as the accumulation of dry mass and specific leaf mass from bud break to senescence. To test the hypothesis that stress tolerance and responsiveness of defences show developmental and/or seasonal changes, leaf discs were either incubated in the absence (control) or presence of paraquat to induce oxidative stress. Controls displayed developmental changes in stress susceptibility ranging from less than 15% of maximum electrolyte leakage in mature leaves to more than20% leakage in senescent and 36-46% in immature leaves. Paraquat concentrations were chosen to result in about 95% of maximum electrolyte conductivity within 24 h in all developmental stages. Paraquat accumulation was about two-fold lower in senescent as compared with immature leaves, whereas stress susceptibility, as characterized by the kinetics of the increase in relative leakage, was similar in these developmental stages with 50% of maximum electrolyte conductivity (EC 50 ) = 6·5 h in immature and 7·5 h in senescent leaves. In mature leaves with intermediate paraquat accumulation rates, two classes of stress-sensitivity were distinguished, namely stress-resistant and stress-susceptible leaves with EC 50 = 9·5 and 5·2 h, respectively. Stress-resistance of mature leaves was accompanied by a rapid, approximately two-fold induction of superoxide dismutase activity. Stresssensitive mature leaves initially contained high superoxide dismutase activities but showed a rapid, more than sixfold loss in activity in 24 h. Correlation of meteorological data with leakage rates suggested that high air temperatures and low precipitation might have been predisposing for loss of resistance against oxidative stress in beech leaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.