To cite this version:J Reinelt, M Westermeier, C Ruhrmann, A Bergner, G M J F Luijks, et al.. Investigating the influence of the operating frequency on the gas phase emitter effect of dysprosium in ceramic metal halide lamps. Journal of Physics D: Applied Physics, IOP Publishing, 2011, 44 (22) Abstract. The dependence of the gas phase emitter effect of Dy on a variation of the operating frequency between some Hz and 2 kHz is investigated in a HID lamp. The buffer gas of the lamp consisting of Ar, Kr and predominantly Hg is seeded with DyI 3 , its burner vessel is formed from transparent YAG material. Phase and spatial resolved emission spectroscopy in front of the lamp electrode and pyrometric temperature measurements along the tungsten electrode are performed with a spectroscopic set up. Dy atom and ion densities in front of the electrode are deduced from absolute intensities of optically thin Dy lines and a plasma temperature, derived from the absolute intensity of mercury lines. Phase resolved values of the electrode tip temperature T tip and input power P in are obtained from temperature distributions along the electrode. Distinctly higher Dy ion and atom densities are measured in front of the electrode within the cathodic phase. With increasing operating frequency a reduction of both, atoms and ions, is observed in front of the cathode. In contrast, an increase of the ion density in front of the anode is seen. Moreover, the Dy ion density is drastically reduced by an additional seeding of the lamp with T lI. It is found that an up rating of the Dy ion density is correlated with a decline of T tip and P in . At higher frequencies this effect takes place not only within the cathodic phase but also within the anodic phase. The reduction of the average electrode tip temperature on the order of several hundred Kelvin compared to a YAG lamp with a pure mercury filling is explained by a Dy monolayer on the electrode surface which is sustained by a Dy ion current.Submitted to: J. Phys. D: Appl. Phys.Investigating the influence of the operating frequency on the gas phase emitter effect of Dy2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.