Two experiments evaluated effects of ractopamine hydrochloride (RAC) on performance, intake patterns, and acid-base balance of feedlot cattle. In Exp. 1, 360 crossbred steers (Brangus, British, and British x Continental breeding; initial BW = 545 kg) were used in a study with a 3 x 3 factorial design to study the effects of dose [0, 100, or 200 mg/(steer x d) of RAC] and duration (28, 35, or 42 d) of feeding of RAC in a randomized complete block design (9 treatments, 8 pens/treatment). No dose x duration interactions were detected (P > 0.10). As RAC dose increased, final BW (FBW; P = 0.01), ADG (P < 0.01), and G:F (P < 0.01) increased linearly. As duration of feeding increased, ADG increased quadratically (P = 0.04), with tendencies for quadratic effects for FBW (P = 0.06), DMI (P = 0.07), and G:F (P = 0.09). Hot carcass weight increased linearly (P = 0.02) as dose of RAC increased. Thus, increasing the dose of RAC from 0 to 200 mg/(steer x d) and the duration of feeding from 28 to 42 d improved feedlot performance, although quadratic responses for duration of feeding indicated little improvement as the duration was extended from 35 to 42 d. In Exp. 2, 12 crossbred beef steers (BW = 593 kg) were used in a completely random design to evaluate the effects of RAC [0 or 200 mg/(steer x d) for 30 d; 6 steers/treatment] on rate of intake, daily variation in intake patterns, and acid-base balance. To assess intake patterns, absolute values of daily deviations in feed delivered to each steer relative to the total quantity of feed delivered were analyzed as repeated measures. There were no differences (P > 0.10) in feedlot performance, urine pH, blood gas measurements, or variation in intake patterns between RAC and control cattle, but steers fed RAC had increased (P = 0.04) LM area, decreased (P = 0.03) yield grade, and increased (P < 0.10) time to consume 50 and 75% of daily intake relative to control steers. Our results suggest that feeding RAC for 35 d at 200 mg/(steer x d) provided optimal performance, and no effects on acid-base balance or variation in intake patterns of finishing steers were noted with RAC fed at 200 mg/(steer x d) over a 30-d period.
Three experiments were conducted to evaluate the effects of feeding 2-hydroxy-4- (methylthio)-butanoic acid (HMTBA) on performance and carcass characteristics of feedlot cattle and on microbial fermentation in a continuous-culture system. In Exp. 1, 160 crossbred steers (initial BW = 385 +/- 10.3 kg) were assigned to 4 treatments consisting of control (0% HMTBA) or 3 diets containing HMTBA (0.069, 0.137, and 0.204%; DM basis) in a randomized complete block design. As the percent of HMTBA increased in the diet, final BW (P = 0.069), final BW adjusted to a constant dressing percent (P = 0.063), and overall ADG (P = 0.099) tended to decrease linearly. Overall DMI decreased linearly (P < or = 0.006) with increasing HMTBA dose. No differences (P > or = 0.10) were noted for carcass characteristics, except for a tendency (P = 0.078) for a linear increase in the percentage of cattle grading USDA Choice with increasing HMTBA dose. In Exp. 2, 80 crossbred steers (initial BW = 450 +/- 17 kg) in a randomized complete block design were assigned to a control (0% HMTBA) diet or to a diet in which the concentrations of HMTBA were gradually increased from 0.036 to 0.212% of DM over a 50-d period. The HMTBA-containing diet tended to decrease DMI (P = 0.132), but G:F (P = 0.319) for the overall feeding period, carcass measurements, and USDA quality grade (P > or = 0.149) did not differ between treatments. In Exp. 3, continuous culture fermenters (n = 5/treatment) were used to determine the effects of HMTBA (control vs. 0.24% HMTBA) on microbial fermentation. No differences (P > or = 0.31) were detected between treatments in ruminal OM digestibility, microbial N synthesis, pH, ammonia, molar proportions of VFA, or effluent concentration of selected long-chain fatty acids. These results suggest that HMTBA decreased DMI by feedlot steers fed a steam-flaked corn-based diet in a dose-dependent manner; however, gradually increasing the dose over time seemed to moderate effects on DMI. No major changes in microbial fermentation in continuous culture were observed with HMTBA at 0.24% of dietary DM, suggesting effects of HMTBA on DMI were not likely associated with changes in ruminal digestion or fermentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.