Magnetic measurements of the lunar crust and Apollo samples indicate that the Moon generated a dynamo magnetic field lasting from at least 4.2 until <2.5 billion years (Ga) ago. However, it has been unclear when the dynamo ceased. Here, we report paleomagnetic and 40Ar/39Ar studies showing that two lunar breccias cooled in a near-zero magnetic field (<0.1 μT) at 0.44 ± 0.01 and 0.91 ± 0.11 Ga ago, respectively. Combined with previous paleointensity estimates, this indicates that the lunar dynamo likely ceased sometime between ~1.92 and ~0.80 Ga ago. The protracted lifetime of the lunar magnetic field indicates that the late dynamo was likely powered by crystallization of the lunar core.
Astronomical observations and isotopic measurements of meteorites suggest that substructures are common in protoplanetary disks and may even have existed in the solar nebula. Here, we conduct paleomagnetic measurements of chondrules in CO carbonaceous chondrites to investigate the existence and nature of these disk substructures. We show that the paleomagnetism of chondrules in CO carbonaceous chondrites indicates the presence of a 101 ± 48 T field in the solar nebula in the outer solar system (~3 to 7 AU from the Sun). The high intensity of this field relative to that inferred from inner solar system (~<3 AU) meteorites indicates a factor of ~5 to 150 mismatch in nebular accretion between the two reservoirs. This suggests substantial mass loss from the disk associated with a major disk substructure, possibly due to a magnetized disk wind.
The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia (I) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼104 m2 to ∼107 m2. Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼102 m2. We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m−2 K−1 s−1/2 (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.
Gale Crater, the Mars Science Laboratory (MSL) landing site, contains a central mound, named Aeolis Mons (informally Mount Sharp) that preserves 5 km of sedimentary stratigraphy. Formation scenarios include (1) complete filling of Gale Crater followed by partial sediment removal or (2) building of a central deposit with morphology controlled by slope winds and only incomplete sedimentary fill. Here we model temperature-time paths for both scenarios, compare results with analyses provided by MSL Curiosity, and provide scenario-dependent predictions of temperatures of diagenesis along Curiosity's future traverse. The effects of variable sediment thermal conductivity and historical heat flows are also discussed. Modeled erosion and deposition rates are 5-37 μm/yr, consistent with previously published estimates from other Mars locations. The occurrence and spatial patterns of diagenesis depend on sedimentation scenario and surface paleotemperature. For (1) temperatures experienced by sediments decrease monotonically along the traverse and up Mount Sharp stratigraphy, whereas for (2) temperatures increase along the traverse reaching maximum temperatures higher up in Mount Sharp's lower units. If early Mars surface temperatures were similar to modern Mars (mean: À50°C), only select locations under select scenarios permit diagenetic fluids. In contrast, if early Mars surface temperatures averaged 0°C or brines had lowered freezing points, diagenesis is predicted in most locations with temperatures < 225°C. Comparing our predictions with future MSL results on diagenetic textures, secondary mineral assemblages, and their spatial variability will constrain past heat flow, Mount Sharp's formation processes, the availability of liquid water on early Mars, and sediment organic preservation potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.