The Laplace transform is applied to remove the time-dependent variable in the di usion equation. For nonharmonic initial conditions this gives rise to a non-homogeneous modiÿed Helmholtz equation which we solve by the method of fundamental solutions. To do this a particular solution must be obtained which we ÿnd through a method suggested by Atkinson. 17 To avoid costly Gaussian quadratures, we approximate the particular solution using quasi-Monte-Carlo integration which has the advantage of ignoring the singularity in the integrand. The approximate transformed solution is then inverted numerically using Stehfest's algorithm.
SUMMARYA two-stage numerical procedure using Chebyshev polynomials and trigonometric functions is proposed to approximate the source term of a given partial differential equation. The purpose of such numerical schemes is crucial for the evaluation of particular solutions of a large class of partial differential equations. Our proposed scheme provides a highly efficient and accurate approximation of multivariate functions and particular solution of certain partial differential equations simultaneously. Numerical results on the approximation of eight two-dimensional test functions and their derivatives are given. To demonstrate that the scheme for the approximation of functions can be easily extended to evaluate the particular solution of certain partial differential equations, we solve a modified Helmholtz equation. Near machine precision can be achieved for all these test problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.