The 2017 Pohang earthquake (M w 5.4) is the largest earthquake associated with fluid injection activities. We report new characteristics of the earthquake and propose a dislocation-type model explaining previously reported observations. We identify fault geometry by relocating the hypocenters of 1,132 events that occurred during the first 3 months and then resolve their source regions as the northern, central, and southern patches, based on event groups with similar waveforms. The spatial features of these similar waveform groups, in addition to our obtained source mechanisms, indicate that oblique contraction is prevalent in the source region: Reverse faulting dominates the southern fault and the deeper part of the central fault; near-parallel strike-slip sense controls the northern fault and the shallower part of the central fault. Furthermore, we identify a migrating aftershock pattern that matches the fluid diffusion process along both sides of the northern and central faults. This observation suggests the interconnection of the two faults, allowing fluid transport, and implies mainshock coseismic movement along the fault intersection. The coseismic slip of the fault intersection can induce a fault-valve process, which explains the aftershock migration pattern along the two intersecting faults. The proposed fault interaction accounts for the previously reported uplift between the two intersecting faults and successfully reproduces the non-double-couple mechanism of the mainshock. Our results raise the question of fluid-faulting interactions in the aftershock seismicity of the Pohang earthquake, and the complex fault movement provides insight into the rupture process that allowed the Pohang earthquake runaway. The Pohang earthquake was characterized by a full moment tensor with a large non-double-couple component, which implies the failure of multiple faults with different senses of slip (Grigoli et al., 2018). The complexity of the rupture process of the earthquake was also mentioned by Song and Lee (2019), who reported a local concentration of coseismic deformation northeast of the epicenter. Kim et al. (2019) reported geometry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.