Dystroglycan-dystrophin complexes are believed to have structural and signaling functions by linking extracellular matrix proteins to the cytoskeleton and cortical signaling molecules. Here we characterize a dystroglycan-dystrophin-related protein 2 (DRP2) complex at the surface of myelin-forming Schwann cells. The complex is clustered by the interaction of DRP2 with L-periaxin, a homodimeric PDZ domain-containing protein. In the absence of L-periaxin, DRP2 is mislocalized and depleted, although other dystrophin family proteins are unaffected. Disruption of the DRP2-dystroglycan complex is followed by hypermyelination and destabilization of the Schwann cell-axon unit in Prx(-/-) mice. Hence, the DRP2-dystroglycan complex likely has a distinct function in the terminal stages of PNS myelinogenesis, possibly in the regulation of myelin thickness.
The Prx gene in Schwann cells encodes L- and S-periaxin, two abundant PDZ domain proteins thought to have a role in the stabilization of myelin in the peripheral nervous system (PNS). Mice lacking a functional Prx gene assemble compact PNS myelin. However, the sheath is unstable, leading to demyelination and reflex behaviors that are associated with the painful conditions caused by peripheral nerve damage. Older Prx-/- animals display extensive peripheral demyelination and a severe clinical phenotype with mechanical allodynia and thermal hyperalgesia, which can be reversed by intrathecal administration of a selective NMDA receptor antagonist We conclude that the periaxins play an essential role in stabilizing the Schwann cell-axon unit and that the periaxin-deficient mouse will be an important model for studying neuropathic pain in late onset demyelinating disease.
Cajal bands are cytoplasmic channels flanked by appositions where the abaxonal surface of Schwann cell myelin apposes and adheres to the overlying plasma membrane. These appositions contain a dystroglycan complex that includes periaxin and dystrophin-related protein 2 (Drp2). Loss of periaxin disrupts appositions and Cajal bands in Schwann cells and causes a severe demyelinating neuropathy in mouse and human. Here, we investigated the role of mouse Drp2 in apposition assembly and Cajal band function and compared it with periaxin. We show that periaxin and Drp2 are not only both required to form appositions, but they must also interact. Periaxin-Drp2 interaction is also required for Drp2 phosphorylation, but phosphorylation is not required for the assembly of appositions. Drp2 loss causes corresponding increases in Dystrophin family members, utrophin and dystrophin Dp116, although dystroglycan remains unchanged. We also show that all dystroglycan complexes in Schwann cells use the uncleaved form of -dystroglycan. Drp2-null Schwann cells have disrupted appositions and Cajal bands, and they undergo focal hypermyelination and concomitant demyelination. Nevertheless, they do not have the short internodal lengths and associated reduced nerve conduction velocity seen in the absence of periaxin, showing that periaxin regulates Schwann cell elongation independent of its role in the dystroglycan complex. We conclude that the primary role of the dystroglycan complex in appositions is to stabilize and limit the radial growth of myelin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.