We fabricated the AlGaN∕GaN metal-oxide-semiconductor heterostructure field-effect transistor (MOSHFET) using the oxidized Ni(NiO) as a gate oxide and compared electrical properties of this device with those of a conventional AlGaN∕GaN heterostructure field-effect transistor (HFET). NiO was prepared by oxidation of Ni metal of 100Å at 600°C for 5min in air ambient. For HFET and MOSHFET with a gate length of 1.2μm, the maximum drain currents were about 800mA∕mm and the maximum transconductances were 136 and 105mS∕mm, respectively. As the oxidation temperature of Ni increased from 300 to 600°C the gate leakage current decreased dramatically due to the formation of insulating NiO. The gate leakage current for the MOSHFET with the oxidized NiO at 600°C was about four orders of magnitude smaller than that of the HFET. Based on the dc characteristics, NiO as a gate oxide is comparable with other gate oxides.
Growth of gallium oxide on n-GaN was realized in H2O by bias-assisted photoelectrochemical (PEC) oxidation using Al as a counterelectrode instead of a Pt commonly used in the PEC process. Although the growth of the oxide was not observed at below 2 V, the initial oxide growth rate of 8.7 nm/min was shown at a bias of 15 V and ultraviolet light intensity of 300 mW/cm2. However, the growth rate lowered and oxide thickness was saturated to 340 nm. The saturated oxide thickness and initial growth rate were increased with the applied bias. The homogeneous oxide growth and near stoichiometric composition of Ga2O3 were observed in Auger electron spectroscopy analysis results.
The dc characteristics of the AlGaN∕GaN heterostructure field-effect transistors were examined at temperatures ranging from 25 to 260 °C under white light illumination. Drain current collapse measured was defined by the difference of drain current between light on and light off at Vgs=1V and Vds=5V. The surface-passivated device showed no drain current collapse, but the unpassivated device showed severe drain current collapse at 25 °C. Drain current and drain current collapse with an increase in temperature reduced, which resulted from the reduction of the electron mobility or saturation velocity and the thermal activation of the trapped electrons, respectively. Eventually, drain current collapse disappeared completely above 250 °C. The behavior of the temperature-dependent drain current collapse showed that the surface states for trapping electrons were continuously distributed with the temperature not having specific energy states.
Bias-dependent photoenhanced electrochemical etching of n-GaN using CH3COOH solution and KOH solution is described. During etching of n-GaN under an illumination of 90 mW/cm2, n-GaN was etched at a rate of 8 nm/min in 0.04 M of KOH solution, and negligible etching was shown in 1% CH3COOH solution at zero substrate bias. However, n-GaN was successfully etched by applying negative bias, and an etch rate of 286 nm/min resulted from the etching in 1% CH3COOH solution at a bias of -9 V and an illumination intensity of 125 mW/cm2. Etch rate increased with negative bias and illumination intensity for etching in both solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.