Catastrophic optical damage (COD) in Al-free InGaAs/InGaP 0.98 μm lasers has been investigated using real-time electroluminescence (EL) and transmission electron microscopy (TEM). From EL images, we observed that multiple bright spots initiated from one of the facets and then propagated to the center of the cavity during the COD process. It is clarified by the TEM analysis that the propagation of bright spots resulted in 60-nm-wide Moiré fringe along the cavity and the crystalline phase of the active area became polycrystalline. Highly nonradiative polycrystalline phase of the active area is the major cause of COD failure in the Al-free 0.98 μm lasers.
A novel method for measuring the linewidth of each laser and channel spacing in a multichannel transmission system is presented. Using the dependence of the Stokes frequency shift on the pump wavelength in stimulated Brillouin scattering, we are able to construct a delayed self-heterodyne interferometer that can measure the linewidths and channel spacing simultaneously.
A self-healing ring is a network to survive during a cable cut [1]. This paper describes an architecture of remote node for uni-directional self-healing ring network, each of which consists of an optical add-drop multiplexer (ADM), three optical switches, and three erbium-doped fiber amplifiers (EDFAs). We estimate the channel capacity of the ring network whose channels are spaced 0.8-nm apart in the amplifier band.
A low energy ion beam assisted deposition (IBAD) technique has been developed to fabricate refractory W-Si-N films for the application to gate electrode of GaAs metal-semiconductor field effect transistors( MESFETs ). Thermal stability of the IBAD refractory metal/n-GaAs interface was investigated by examining the microstructure and Schottky diode characteristics. The Schottky barrier heights of 0.71, 0.84, and 0.76 eV were obtained after thermal annealing at 850°C for the W/, WN0.27/, and WSi0.3N0.4/GaAs diodes, respectively, and these values are comparable to those of the best results published with conventional reactive sputtering. While some crystalization of the deposit and reaction between film and substrate at the interface were observed with TEM for the W/ and WN/GaAs contacts annealed at 800°, the WSiN film remained amorphous and showed clear interface with the GaAs substrate without significant morphological change. The WS0.3N0.4/GaAs diode showed good thermal stability of Schottky barrier heights with only 20 meV variation in the temperature range between 700 and 850°C, and that is proposed to be due to the stable microstructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.