SUMMARY1. Forskolin (activator of adenyl cyclase), high concentrations of K+ and high renal perfusion pressure (manoeuvres known to increase Ca2+ permeability), and calmidazolium (the specific blocker of calmodulin) were used to investigate the mechanisms whereby adenosine 3',5'-phosphate (cyclic AMP) and Ca2+ interact to control renin secretion and perfusate flow in the isolated perfused rat kidney.2. Forskolin stimulated renin secretion and caused vasodilation in a dose-dependent manner in medium containing 5 mM-Ca2+. Reducing the Ca2+ concentration to 1P25 mm did not affect the renin stimulatory response but blunted the vasodilation.3. High K+ concentration reversed the forskolin-induced renin secretion and vasodilation. Conversely, forskolin reversed the high K+-induced renin inhibition of renin secretion and vasoconstriction. These effects of forskolin and high K+ were absent when Ca2+ was withheld from the perfusion medium. High renal perfusion pressure also reversed the forskolin-induced renin secretion.4. Calmidazolium prevented the inhibition mediated by high K+ and high perfusion pressure and thereby restored the forskolin-induced stimulation. Calmidazolium also caused a prompt and marked vasoconstriction.5. The calmidazolium-induced stimulation of renin secretion was Ca2+-dependent since the drug was ineffective in the absence of Ca2+. On the other hand, the prompt and potent vasoconstriction was present even in the Ca2+-free medium.6. These results support the hypothesis that cyclic AMP stimulates renin secretion by a mechanism which involves a lowering of membrane permeability to Ca2+ in addition to lowering cytosolic Ca2+ concentration. High K+ and high renal perfusion pressure inhibit renin secretion by raising the membrane permeability to Ca2+, thereby raising the intracellular Ca2+ concentration which then inhibits renin secretion by a calmodulin-dependent process. A further general conclusion from these studies is that membrane permeability to Ca2+ and cellular Ca2+ concentration are of central importance in the control of renin secretion and renal blood flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.