The physics of divertors in tokamaks is reviewed, primarily from an experimental point of view, although where possible simple analytic modelling is included. The paper covers the four main subject areas at issue in divertor research: (1) the wide dispersal of plasma power exhausted from the main plasma, (2) the production of sufficiently high gas pressures in the vicinity of pump ducts to enable the removal of fuel and helium ('ash') gas from the system, (3) the elimination or reduction of impurity production and (4) the screening of impurities produced, or intentionally added, at the plasma boundary from the plasma core. A simple analytic model, the 'two-point' model, is introduced early in the paper and provides a framework for comparison of the experimental results, drawn from many machines, with simply derived expectations. Conclusions regarding the direction of future research priorities are made.
Detailed measurements of the magnitude and location of volumetric recombination occurring in the detached divertor of Alcator C-Mod tokamak [I.H. Hutchinson et al., Phys. Plasmas 1, 1511(1994] are presented. The drop in divertor plate ion current during detachment is due to two mechanisms: (1) volumetric recombination in the divertor plasma; and (2) reductions in the divertor ion source. Depending on plasma conditions, each of these can be the primary mechanism for the observed ion current reduction in detachment. The ion source during detachment is inferred and its magnitude is consistent with the measured divertor power flow. A scaling of the density in the divertor recombining region for L-(Low confinement) mode plasmas is found, n e,r ∝ n e 0.8 • P SOL 2/7 . A model based on pressure variation along a flux surface during detachment is consistent with the main features of this scaling.
A new model has been developed for hydrogen retention and trapping in and release from graphite. Two different regions in the graphite with different hydrogen transport and trapping behaviors are distinguished, the bulk region within, and the surface region on graphite crystallites. The model incorporates new experimental results related to atom diffusion and recombination on inner surfaces. Recombination is explained from a fundamental viewpoint by linking it to diffusion using a classical expression. The model is applied to a number of reemission and thermal desorption experiments, in particular, the reemission of hydrogen atoms during irradiation with energetic hydrogen ions and the formation of HD during irradiation with H+ and D+ or during thermal desorption of graphite that was preimplanted with H+ and D+ ions with different energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.