Guided bone regeneration (GBR) in implant therapy is especially useful for implant placement with dehiscence defects or fenestration defects. In alveolar ridges with marked facial/buccal depressions or in knifeedge alveolar crests, the position and direction of fixture placement is restricted. Improvement of alveolar ridge morphology becomes possible with GBR. This article describes a case in which the fenestration defect around an implant was treated by the application of platelet rich fibrin, a second generation platelet concentrate along with bone graft, and guided tissue regeneration membrane.
Aim:The aim of this study was to examine the impact of thermocycling on the flexural strength and development of surface flaws on the glazed surface of porcelain laminate veneer restorations with and without resin luting cement.Materials and Methods:80 Vitadur alpha dentin porcelain discs (10 mm diameter, 0.9 mm thickness) were glazed on one side and divided into two groups: A (porcelain laminate veneer only without resin luting cement) and B (porcelain laminate veneer luted with resin cement), each containing 40 discs. The discs in groups A and B were then thermocycled at different temperatures and were subjected to SEM analysis to evaluate the effect of thermocycling on crack propagation. Mean flexural strength was determined by using the ball-on-ring test. Student's t -test was used to find out the difference between strength values of the thermocycled porcelain discs and discs luted with resin cement.Results:SEM analysis revealed crack propagation in the subgroups subjected to extremes of temperature, i.e., 4 ± 1°C, 37 ± 1°C and 4 ± 1°C, 65 ± 1°C in the porcelain laminate veneers luted with resin cement. Flexural strength analysis revealed superior flexural strength for porcelain laminate veneers: 88.58 ± 6.94 MPa when compared to porcelain laminate veneers luted with resin cement: 8.42 ± 2.60 MPa. Results were tabulated and statistically analyzed using Student's t -test.Conclusion:Laminate veneer specimens exhibited greater flexural strength than those which were luted with resin cements. Laminate veneer specimens luted with resin cement and subjected to extremes of temperature, 4 ± 1°C and 37 ± 1°C and 4 ± 1°C and 65 ± 1°C, showed a marked decrease in flexural strength. After thermocycling at extremes of temperature, laminate veneer specimens luted with resin cement showed crack propagation. Fit of laminate veneers cannot / should not be compensated by the thickness of luting agent.
Background: Advancing surgical reconstructive methods and demanding prosthetics need accurate and precise implant placements. Positioning dental implant is vital in both prosthetic and aesthetic perspectives. The optimal three-dimensional placement not only reduces biomechanical complications but also imprecates the odds of implant failure. Materials & Methods: By using robust text mining, searching and retrieval tools, 350 relevant articles were found and then out of them 161 articles were short listed for our review. They included systematic reviews, meta-analyses, case series and experimental studies. Conclusions & Results: Conventional freehand implant placement techniques remain experts' favorite for uncompromised cases. However, for compromised cases that demand accuracy and predictability, various computer-based methods are in use. While computerized tomography techniques and use of interactive software prevalent in treatment planning, computer-aided design or computer-aided manufacturing (CAD/ CAM) fabricated surgical guides enable implantologists for more successful implantations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.