Ecosystem maps are foundational tools that support multi-disciplinary study design and applications including wildlife habitat assessment, monitoring and Earth-system modeling. Here, we present continuous-field cover maps for tundra plant functional types (PFTs) across~125,000 km 2 of Alaska's North Slope at 30-m resolution. To develop maps, we collected a field-based training dataset using a point-intercept sampling method at 225 plots spanning bioclimatic and geomorphic gradients. We stratified vegetation by nine PFTs (e.g., low deciduous shrub, dwarf evergreen shrub, sedge, lichen) and summarized measurements of the PFTs, open water, bare ground and litter using the cover metrics total cover (areal cover including the understory) and top cover (uppermost canopy or ground cover). We then developed 73 spectral predictors derived from Landsat satellite observations (surface reflectance composites for~15-day periods from May-August) and five gridded environmental predictors (e.g., summer temperature, climatological snow-free date) to model cover of PFTs using the random forest data-mining algorithm. Model performance tended to be best for canopy-forming PFTs, particularly deciduous shrubs. Our assessment of predictor importance indicated that models for low-statured PFTs were improved through the use of seasonal composites from early and late in the growing season, particularly when similar PFTs were aggregated together (e.g., total deciduous shrub, herbaceous). Continuous-field maps have many advantages over traditional thematic maps, and the methods described here are well-suited to support periodic map updates in tandem with future field and Landsat observations.
Aims: The USNVC is the standard for vegetation classification in the US and is part of the broader IVC. Recent work on the USNVC in Alaska established macrogroups, groups and alliances. Here we incorporate tussock tundra and low and tall willow (Salix) groups and alliances for northwestern Arctic Alaska into the IVC and USNVC classification. Study Area: The study area encompasses the Seward Peninsula, the western Brooks Range, and the northwestern foothills and Arctic coastal plain of Alaska. Methods: We used data from 2,087 relevé plots collected between 1992 and 2019 from northwestern Arctic Alaska to prepare a draft association classification using cluster analysis, ordination, and sorted tables. The draft classification was subject to peer review and subsequently refined. We fit the tussock tundra and low and tall willow associations into the USNVC using NMDS and GAMs to evaluate the patterns of environmental gradients against the ordination axis scores. Results: We identified eight tussock tundra and 37 low and tall willow associations. The associations fit in two classes, two subclasses, two formations, two divisions, three macrogroups, four groups, and 13 alliances. A description of the alliances, and a field guide to the northwestern Arctic Alaska tussock tundra and low and tall willow associations, including a dichotomous key and descriptions, is provided. Conclusions: Many of the tussock tundra and low and tall willow associations fit seamlessly within the USNVC, while some alliances had yet to be defined, and we have proposed new alliances here. In still other cases, we proposed a new group and recommend broadening the concept of an existing group using a data-driven approach. Since not all available data from Arctic Alaska were used in this study, we suggest continuing with a more comprehensive analysis to fulfill the gap at the alliance and association levels for Arctic Alaska. Taxonomic reference: USDA NRCS (2021) for vascular plants, bryophytes, and lichens. Syntaxonomic reference: USNVC (2019). Abbreviations: AVA-AK = Alaska Arctic Vegetation Archive; AVPD = Alaska Vegetation Plots Database; BCP = Beaufort Coastal Plain; CAVM = Circumpolar Arctic Vegetation Map; CBVM = Circumboreal vegetation map; EC = Electrical conductivity; ELD = ELS Legacy Database; ELS = Ecological Land Survey; GAM = Generalized additive model; IVC = International vegetation classification; LPI = line-point intercept; NMDS = Non-metric multidimensional scaling; PAM = Partitioning Around Medoids; PESC = Proportionate ericaceous shrub cover; SM = Supplementary material; US = United States of America; USNVC = U.S. National Vegetation Classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.