One of the most common products in the construction industry is brick due to its advantages over other building materials such as blocks. In developing countries like Ecuador, brick is handcrafted and is the source of income for thousands of families. These bricks lack a systematized process that optimizes resources to make a brick that meets local regulations. This study evaluates the use of the different raw materials used in production through experimental designs to determine the amount of optimal components locally available (“White Clay,” “Black Clay,” “Water”) and achieve the maximum compressive strength in dry-pressed ceramic bricks. This research also identifies the behavior of the compressive strength based on the compaction pressure in the molding stage, concluding that the model that best fits the behavior is a quadratic model, and from the trace plot, it was observed that compared with “White Clay,” “Black Clay” contributes further to the brick strength. The optimal amount of components to meet the 6 MPa pressure standard required in the brick was 5% water, 85% “Black Clay” and 10% “White Clay.” The pressure value required in the compaction stage was 4.9Mpa (712psi,) and greater strength can be achieved by only adding “Black Clay” and water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.