First, this paper proposes a comprehensive framework for the modeling of the intrinsic FCP (i.e. after elimination of any environmental and closure effects). On the basis of numerous experimental data on Al alloys, steels and Ti alloys, three intrinsic crack growth regimes have been identified: i) stage I regime, observed in single crystals or in the early growth phase of short cracks; ii) stage II regime, commonly observed when the crack advance proceeds along a plane normal to the load axis and results from the activation of symmetrical slip systems; iii) crystallographic stage I-like regime which prevails near the threshold.
Second, this contribution is dedicated to the description of environmentally assisted propagation and specially focused on the understanding of the role of water vapor and the complex interactions existing between environment and microstructure. The effective FCP behavior is described by superimposing two distinct stage II regimes: i) a propagation assisted by water vapor adsorption which can be operative under very low partial pressure or at very low frequencies; ii) hydrogen-assisted propagation which is operative when some critical conditions are encountered.
Constitutive laws are proposed for both intrinsic propagation and water-vapor assisted propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.