؉ T-cell responses, which result in reduced HSV-2-derived morbidity, as well as reduced mortality. However, coinjection with DNAs expressing MCP-1, IP-10, and MIP-1␣ increased mortality in the challenged mice. Chemokine DNA coinjection also modulated its own production as well as the production of cytokines. These studies demonstrate that chemokines can dominate and drive immune responses with defined phenotypes, playing an important role in the generation of protective antigen-specific immunity.
Adenosine 5'-phosphosulfate (APS) kinase (ATP:APS 3'-phosphotransferase) catalyzes the ultimate step in the biosynthesis of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), the primary biological sulfuryl donor. APS kinase from Escherichia coli is phosphorylated upon incubation with ATP, yielding a protein that can complete the overall reaction through phosphorylation of APS. Rapid-quench kinetic experiments show that, in the absence of APS, ATP phosphorylates the enzyme with a rate constant of 46 s-1, which is equivalent to the Vmax for the overall APS kinase reaction. Similar pre-steady-state kinetic measurements show that the rate constant for transfer of the phosphoryl group from E-P to APS is 91 s-1. Thus, the phosphorylated enzyme is kinetically competent to be on the reaction path. In order to elucidate which amino acid residue is phosphorylated, and thus to define the active site region of APS kinase, we have determined the complete sequence of cysC, the structural gene for this enzyme in E. coli. The coding region contains 603 nucleotides and encodes a protein of 22,321 Da. Near the amino terminus is the sequence 35GLSGSGKS, which exemplifies a motif known to interact with the beta-phosphoryl group of purine nucleotides. The residue that is phosphorylated upon incubation with ATP has been identified as serine-109 on the basis of the amino acid composition of a radiolabeled peptide purified from a proteolytic digest of 32P-labeled enzyme. We have identified a sequence beginning at residue 147 which may reflect a PAPS binding site. This sequence was identified in the carboxy terminal region of 10 reported sequences of proteins of PAPS metabolism.
The putrescine biosynthetic enzyme agmatine ureohydrolase (AUH) (EC 3.5.3.11) catalyzes the conversion of agmatine to putrescine in Escherichia coli. AUH was purified approximately 1,600-fold from an E. coli strain transformed with the plasmid pKA5 bearing the speB gene encoding the enzyme. The purification procedure included ammonium sulfate precipitation, heat treatment, and DEAE-sephacel column chromatography. The molecular mass of nondenatured AUH is approximately 80,000 daltons as determined by gel-sieving column chromatography, while on denaturing polyacrylamide gels, the molecular mass is approximately 38,000 daltons; thus, native AUH is most likely a dimer. A radiolabeled protein extracted from minicells carrying the pKA5 plasmid comigrated with the purified AUH in both sodium dodecyl sulfate-polyacrylamide and native polyacrylamide gels. The pl of purified AUH is between 8.2 and 8.4, as determined by either chromatofocusing or isoelectric focusing. The Km of purified AUH for agmatine is 1.2 mM; the pH optimum is 7.3. Neither the numerous ions and nucleotides tested nor polyamines affected AUH activity in vitro. EDTA and EGTA
S-Adenosylmethionine (AdoMet) plays a myriad of roles in cellular metabolism. One of the many roles of AdoMet in Escherichia coli and Salmonella typhimurium is as a corepressor of genes encoding enzymes of methionine biosynthesis. To investigate the metabolic effects of large reductions in intracellular AdoMet concentrations in growing cells, we constructed and examined mutants of E. coli which are conditionally defective in AdoMet synthesis. Temperature-sensitive mutants in metK, the structural gene for the Sadenosylmethionine synthetase (AdoMet synthetase) expressed in minimal medium, were constructed by in vitro mutagenesis of a plasmid-borne copy of metK. By homologous recombination, the chromosomal copy was replaced with the mutated metK gene. Both heat-and cold-sensitive mutants were examined. At the nonpermissive temperature, two such mutants had 200-fold-reduced intracellular AdoMet levels and required either methionine or vitamin B12 for growth. In the presence of methionine or vitamin B12, the mutants grew at normal rates even though the AdoMet levels remained 0.5% of wild type. A third mutant when placed at nonpermissive temperature had <0.2% of the normal AdoMet level and did not grow on minimal medium even in the presence of methionine or vitamin B12. All of these mutants grew normally on yeast-extract-based medium in which an alternate form of S-adenosylmethionine synthetase was expressed.S-Adenosylmethionine (AdoMet) has numerous roles in metabolism, including acting as a methyl group donor in many reactions, as a propylamine donor in the biosynthesis of the polyamines spermine and spermidine, and in a noncovalent role as a corepressor of the methionine biosynthetic regulon in Escherichia coli and Salmonella typhimurium (5,8,12,28,29,31,32). A difficulty in studying the behavior of AdoMet-dependent processes in enteric bacteria is the impermeability of the cells to AdoMet and the lack of mutant strains which can be grown with substantially altered AdoMet levels (2,13,14,16,23). All reported mutants deficient in AdoMet synthetase (ATP:L-methionine S-adenosyltransferase) have mapped to metK, which encodes the AdoMet synthetase expressed in minimal medium. The reported mutants have maximally fourfold-reduced intracellular AdoMet levels, apparently as a result of production of partially active AdoMet synthetases (9-11, 16-18, 27
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.