SUMMARYAim: The gastrointestinal transit of sequentially administered capsules was investigated in relation to the availability of fluid along the intestinal lumen by magnetic resonance imaging. Methods: Water-sensitive magnetic resonance imaging was performed on 12 healthy subjects during fasting and 1 h after a meal. Specifiable non-disintegrating capsules were administered at 7, 4 and 1 h prior to imaging. Results: While food intake reduced the mean fluid volumes in the small intestine (105 ± 72 mL vs. 54 ± 41 mL, P < 0.01) it had no significant effect on the mean fluid volumes in the colon (13 ± 12 mL vs. 18 ± 26 mL). The mean number of separated fluid pockets increased in both organs after meal (small intestine: 4 vs. 6, P < 0.05; large intestine: 4 vs. 6, P < 0.05). The distribution of capsules between the small and large intestine was strongly influenced by food (colon: 3 vs. 17 capsules, P < 0.01). Conclusions:The results show that fluid is not homogeneously distributed along the gut, which likely contributes to the individual variability of drug absorption. Furthermore, transport of fluid and solids through the ileocaecal valve is obviously initiated by a meal-induced gastro-ileocaecal reflex.
Using three different Fcγ receptor (FcγR)-deficient mouse strains, we examined the induction of autoimmune hemolytic anemia by each of the four immunoglobulin (Ig)G isotype-switch variants of a 4C8 IgM antierythrocyte autoantibody and its relation to the contributions of the two FcγR, FcγRI, and FcγRIII, operative in the phagocytosis of opsonized particles. We found that the four IgG isotypes of this antibody displayed striking differences in pathogenicity, which were related to their respective capacity to interact in vivo with the two phagocytic FcγRs, defined as follows: IgG2a > IgG2b > IgG3/IgG1 for FcγRI, and IgG2a > IgG1 > IgG2b > IgG3 for FcγRIII. Accordingly, the IgG2a autoantibody exhibited the highest pathogenicity, ∼20–100-fold more potent than its IgG1 and IgG2b variants, respectively, while the IgG3 variant, which displays little interaction with these FcγRs, was not pathogenic at all. An unexpected critical role of the low-affinity FcγRIII was revealed by the use of two different IgG2a anti–red blood cell autoantibodies, which displayed a striking preferential utilization of FcγRIII, compared with the high-affinity FcγRI. This demonstration of the respective roles in vivo of four different IgG isotypes, and of two phagocytic FcγRs, in autoimmune hemolytic anemia highlights the major importance of the regulation of IgG isotype responses in autoantibody-mediated pathology and humoral immunity.
In autoimmune hemolytic anemia (AIHA), there is accumulating evidence for an involvement of FcγR expressed by phagocytic effector cells, but demonstration of a causal relationship between individual FcγRs and IgG isotypes for disease development is lacking. Although the relevance of IgG isotypes to human AIHA is limited, we could show a clear IgG isotype dependency in murine AIHA using pathogenic IgG1 (105-2H) and IgG2a (34-3C) autoreactive anti–red blood cell antibodies in mice defective for FcγRIII, and comparing the clinical outcome to those in wild-type mice. FcγRIII-deficient mice were completely resistent to the pathogenic effects of 105-2H monoclonal antibody, as shown by a lack of IgG1-mediated erythrophagocytosis in vitro and in vivo. In addition, the IgG2a response by 34-3C induced a less severe but persistent AIHA in FcγRIII knock-out mice, as documented by a decrease in hematocrit. Blocking studies indicated that the residual anemic phenotype induced by 34-3C in the absence of FcγRIII reflects an activation of FcγRI that is normally coexpressed with FcγRIII on macrophages. Together these results show that the pathogenesis of AIHA through IgG1-dependent erythrophagocytosis is exclusively mediated by FcγRIII and further suggest that FcγRI, in addition to FcγRIII, contributes to this autoimmune disease when other IgG isotypes such as IgG2a are involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.