We consider the statistical distribution of zeros of random meromorphic functions whose poles are independent random variables. It is demonstrated that correlation functions of these zeros can be computed analytically and explicit calculations are performed for the 2-point correlation function. This problem naturally appears in e.g. rank-one perturbation of an integrable Hamiltonian and, in particular, when a δ-function potential is added to an integrable billiard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.