Different methodologies are available for clustering purposes. The objective of this paper is to review the capacity of some of them and specifically to test the ability of self-organizing maps (SOMs) to filter, classify, and extract patterns from distributor, commercializer, or customer electrical demand databases. These market participants can achieve an interesting benefit through the knowledge of these patterns, for example, to evaluate the potential for distributed generation, energy efficiency, and demand-side response policies (market analysis). For simplicity, customer classification techniques usually used the historic load curves of each user. The first step in the methodology presented in this paper is anomalous data filtering: holidays, maintenance, and wrong measurements must be removed from the database. Subsequently, two different treatments (frequency and time domain) of demand data were tested to feed SOM maps and evaluate the advantages of each approach. Finally, the ability of SOM to classify new customers in different clusters is also examined. Both steps have been performed through a well-known technique: SOM maps. The results clearly show the suitability of this approach to improve data management and to easily find coherent clusters between electrical users, accounting for relevant information about weekend demand patterns.Index Terms-Data mining, demand management, electrical customer segmentation, load patterns, self-organizing maps (SOMs). . His research activities include distribution system analysis, electricity markets, demand modeling and aggregation, distributed energy resources, energy efficiency, and demand-side management and response. His research activities include electricity markets, demand modeling and aggregation, demand-side bidding, and electrical customer classification.