Gas distribution function plays a crucial role in the description of gas flows at the mesoscopic scale. In the presence of non-equilibrium flow, the distribution function loses its rotational symmetricity, making the mathematical derivation difficult. From both the Chapman-Enskog expansion and the Hermite polynomial expansion (Grad's method), we observe that the non-equilibrium effect is closely related to the peculiar velocity space (C). Based on this recognition, we propose a new methodology to construct the non-equilibrium distribution function from the perspective of polynomial expansion in the peculiar velocity space of molecules. The coefficients involved in the non-equilibrium distribution function can be exactly determined by the compatibility conditions and the moment relationships. This new framework allows constructing non-equilibrium distribution functions at any order of truncation, and the ones at the third and the fourth order have been presented in this paper for illustration purposes. Numerical validations demonstrate that the new method is more accurate than the Grad's method at the same truncation error for describing non-equilibrium effects. Two-dimensional benchmark tests are performed to shed light on the applicability of the new method to practical engineering problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.