Extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a member of the Ig superfamily, with various physiological roles including the induction of matrix metalloproteinases (MMPs), leukocyte activation, and tumor progression. In this study, we illustrate a novel involvement of EMMPRIN in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). We found EMMPRIN levels to be upregulated on peripheral leukocytes before onset of EAE clinical signs and on infiltrating leukocytes and resident cells within the CNS in symptomatic mice. In EAE brain sections, EMMPRIN expression was localized with MMP-9 protein and activity. The increased EMMPRIN level was also characteristic of brain samples from MS subjects, particularly in plaque-containing areas. To evaluate the implications of elevated EMMPRIN levels, we treated EAE mice with an EMMPRIN function-blocking antibody and found reduced EAE clinical severity accompanied by decreased CNS parenchymal infiltration of leukocytes. Amelioration of EAE clinical signs by the anti-EMMPRIN antibody was critically dependent on its administration around the period of onset of clinical signs, which is typically associated with significant influx of leukocytes into the CNS. Moreover, the reduction in disease severity in anti-EMMPRINtreated mice was associated with diminished MMP proteolytic activity at the glia limitans, the final barrier before parenchymal infiltration of leukocytes. Together, our results are the first to emphasize a role for EMMPRIN in MS and EAE, whereby EMMPRIN regulates leukocyte trafficking through increasing MMP activity. These results identify EMMPRIN as a novel therapeutic target in MS.
The release of neurotoxins by activated brain macrophages or microglia is one mechanism proposed to contribute to the development of neurological disease following infection by lentiviruses, including feline immunodeficiency virus (FIV). Since molecular diversity in the lentiviral envelope gene influences the expression of host molecules implicated in neuronal injury, the role of the envelope sequence in FIV neuropathogenesis was investigated by using the neurovirulent FIV strain V1CSF, the nonneurovirulent strain Petaluma, and a chimera (FIVCh) containing the V1CSF envelope gene in a Petaluma background. All three viruses replicated in primary feline macrophages with equal efficiency, but conditioned medium from V1CSF-or FIVCh-infected cells was significantly more neurotoxic than medium from Petaluma-infected cultures (P < 0.001) and could be attenuated in a dose-dependent manner by treatment with either the matrix metalloproteinase (MMP) inhibitor prinomastat (PMT) or function-blocking antibodies to MMP-2. Although FIV sequences were detectable by PCR in brain tissue from neonatal cats infected with each of the viral strains, immunohistochemistry revealed increased astrogliosis and macrophage activation in the brains of V1CSF-and FIVCh-infected cats relative to the other groups, together with elevated markers of neuronal stress that included morphological changes and increased c-fos immunoreactivity. Similarly, MMP-2, but not MMP-9, mRNA and protein expression was increased in brain tissues of V1CSF-and FIVCh-infected cats relative to Petaluma-infected animals (P < 0.01). Infection with V1CSF or FIVCh was also associated with greater CD4 ؉ cell depletion (P < 0.001) and neurodevelopmental delays (P < 0.005), than in Petaluma-infected animals; these deficits improved following PMT therapy. These findings indicated that diversity in the envelope gene sequence influenced the neurovirulence exhibited by FIV both in vitro and in vivo, possibly through a mechanism involving the differential induction of MMP-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.