<span lang="EN-US">Due to various killing diseases in the world, medical data clustering is a very challenging and critical task to handle and to take the proper decision from multidimensional complex data in an effective manner. The most familiar and suitable speedy clustering algorithm is K-means than other traditional clustering approaches. But K-means is extra sensitive for initialization of clustering centroid and it can easily surround. Thus, there is a necessity for faster clustering with an effective optimum clustering centroid. Based on that, this research paper projected an optimization-based clustering by hybrid fuzzy C-means (FCM) clustering on rainfall flow optimization technique (RFFO), which is the normal flow and behavior of rainfall flow from one position to another position. FCM clustering algorithm is used to cluster the given medical data and RFFO is used to produce optimum clustering centroid. Finally, the clustering performance is also measured for the proposed FCM clustering on RFFO technique with the help of accuracy, random coefficient, and Jaccard coefficient for medical data set and find the risk factor of a heart attack.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.