Oxytocin is a neuropeptide with widespread influence on many physiological and social functions including: labor and birth, lactation, sexual behavior, nurturing maternal behaviors, and stress reduction. However, our understanding of oxytocin's roles has been hampered by lack of noninvasive methods for assessing oxytocin levels. The goal of the present study was to assess whether oxytocin could be detected in saliva and whether changes occurred in the pattern of oxytocin release among lactating women from before, at initiaton and after breast feeding. Using a prospective repeated measures design, 11 research participants each provided 18 saliva samples during three feeding cycles (before, at initiation and after breast feeding) for two 24-hour data collection periods (Day 1 and 2). Within each day, saliva was collected at late evening, early morning, and late morning. Salivary samples were concentrated four-fold by dehydration prior to analysis and oxytocin was measured in saliva using an enzyme immunoassay (EIA). Salivary oxytocin values, when reconverted to their original levels, ranged from 6.44 -61.05 pg/ml. Oxytocin values in saliva varied significantly as a function of the breast feeding cycle, but did not show reliable differences as a function of the time of feeding. Oxytocin was highest before feeding, followed by a decrease at initiation of feeding, and an increase at 30 minutes after feeding. The findings suggest that oxytocin release into saliva increases in anticipation of feedings. This study also supports the potential usefulness of salivary measures of oxytocin as a noninvasive index of changes in this peptide.
The molecular and neural mechanisms regulating human social-emotional behaviors are fundamentally important but largely unknown; unraveling these requires a genetic systems neuroscience analysis of human models. Williams Syndrome (WS), a condition caused by deletion of ∼28 genes, is associated with a gregarious personality, strong drive to approach strangers, difficult peer interactions, and attraction to music. WS provides a unique opportunity to identify endogenous human gene-behavior mechanisms. Social neuropeptides including oxytocin (OT) and arginine vasopressin (AVP) regulate reproductive and social behaviors in mammals, and we reasoned that these might mediate the features of WS. Here we established blood levels of OT and AVP in WS and controls at baseline, and at multiple timepoints following a positive emotional intervention (music), and a negative physical stressor (cold). We also related these levels to standardized indices of social behavior. Results revealed significantly higher median levels of OT in WS versus controls at baseline, with a less marked increase in AVP. Further, in WS, OT and AVP increased in response to music and to cold, with greater variability and an amplified peak release compared to controls. In WS, baseline OT but not AVP, was correlated positively with approach, but negatively with adaptive social behaviors. These results indicate that WS deleted genes perturb hypothalamic-pituitary release not only of OT but also of AVP, implicating more complex neuropeptide circuitry for WS features and providing evidence for their roles in endogenous regulation of human social behavior. The data suggest a possible biological basis for amygdalar involvement, for increased anxiety, and for the paradox of increased approach but poor social relationships in WS. They also offer insight for translating genetic and neuroendocrine knowledge into treatments for disorders of social behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.