Uncertainty is ubiquitous and happens in every single prediction of Machine Learning models. The ability to estimate and quantify the uncertainty of individual predictions is arguably relevant, all the more in safety-critical applications. Real-world recognition poses multiple challenges since a model’s knowledge about physical phenomenon is not complete, and observations are incomplete by definition. However, Machine Learning algorithms often assume that train and test data distributions are the same and that all testing classes are present during training. A more realistic scenario is the Open Set Recognition, where unknown classes can be submitted to an algorithm during testing. In this paper, we propose a Knowledge Uncertainty Estimation (KUE) method to quantify knowledge uncertainty and reject out-of-distribution inputs. Additionally, we quantify and distinguish aleatoric and epistemic uncertainty with the classical information-theoretical measures of entropy by means of ensemble techniques. We performed experiments on four datasets with different data modalities and compared our results with distance-based classifiers, SVM-based approaches and ensemble techniques using entropy measures. Overall, the effectiveness of KUE in distinguishing in- and out-distribution inputs obtained better results in most cases and was at least comparable in others. Furthermore, a classification with rejection option based on a proposed combination strategy between different measures of uncertainty is an application of uncertainty with proven results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.